Christopher Schwarz

Learn More
This paper presents a method for detection of cerebral white matter hyperintensities (WMH) based on run-time PD-, T1-, and T2-weighted structural magnetic resonance (MR) images of the brain along with labeled training examples. Unlike most prior approaches, the method is able to reliably detect WMHs in elderly brains in the absence of fluid-attenuated(More)
OBJECTIVE To evaluate relationships between magnetic resonance imaging (MRI)-based measures of white matter hyperintensities (WMHs), measured at baseline and longitudinally, and 1-year cognitive decline using a large convenience sample in a clinical trial design with a relatively mild profile of cardiovascular risk factors. DESIGN Convenience sample in a(More)
IMPORTANCE Cerebrovascular disease and Alzheimer disease (AD) frequently co-occur and seem to act through different pathways in producing dementia. OBJECTIVE To examine cerebrovascular disease and AD markers in relation to brain glucose metabolism in patients with mild cognitive impairment. DESIGN AND SETTING Cohort study among the Alzheimer Disease(More)
This study assessed relationships among white matter hyperintensities (WMH), cerebrospinal fluid (CSF), Alzheimer's disease (AD) pathology markers, and brain volume loss. Subjects included 197 controls, 331 individuals with mild cognitive impairment (MCI), and 146 individuals with AD with serial volumetric 1.5-T MRI. CSF Aβ1-42 (n = 351) and tau (n = 346)(More)
BACKGROUND Current hypothetical models of Alzheimer's disease (AD) pathogenesis emphasize the role of β-amyloid (Aβ), tau deposition, and neurodegenerative changes in the mesial temporal lobe, particularly the entorhinal cortex and hippocampus. However, many individuals with clinical AD who come to autopsy also exhibit cerebrovascular disease. The(More)
Previous work examining Alzheimer's Disease Neuroimaging Initiative (ADNI) normal controls using cluster analysis identified a subgroup characterized by substantial brain atrophy and white matter hyperintensities (WMH). We hypothesized that these effects could be related to vascular damage. Fifty-three individuals in the suspected vascular cluster (Normal(More)
Many brain aging studies use total intracranial volume (TIV) as a proxy measure of premorbid brain size that is unaffected by neurodegeneration. T1-weighted Magnetic Resonance Imaging (MRI) sequences are commonly used to measure TIV, but T2-weighted MRI sequences provide superior contrast between the cerebrospinal fluid (CSF) bounding the premorbid brain(More)