Christopher S. Own

Learn More
Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on. It images matter with electrons that scatter(More)
The electron precession diffraction technique is employed to provide quasi-kinematical data for determination of atom positions in the (Ga,In)2SnO5m-phase. Precession data are compared with conventional diffraction data captured under identical conditions and show a distinct superiority because they exhibit kinematical characteristics in the(More)
An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow(More)
Precession electron diffraction (PED) is a technique which is gaining increasing interest due to its ease of use and reduction of the dynamical scattering problem in electron diffraction. To further investigate the usefulness of this technique, we have performed a systematic study of the effect of precession angle on the mineral andalusite where the(More)
Bulk structural crystallography is generally a two-part process wherein a rough starting structure model is first derived, then later refined to give an accurate model of the structure. The critical step is the determination of the initial model. As materials problems decrease in length scale, the electron microscope has proven to be a versatile and(More)
Kinematical and two-beam calculations have been conducted and are compared to experimental precession data for the large unit cell crystal La4Cu3MoO12. Precession electron diffraction intensities are found to exhibit approximate two-beam behavior and demonstrate clear advantages over conventional SADP intensities for use in structure solution.
A 2-beam model is used to simulate precession electron diffraction (PED) intensities. It is shown that this model can be inverted with minimal knowledge of the underlying crystal structure, permitting structure factor amplitudes to be deduced directly from measured intensities within the 2-beam approximation. This approach may be used in conjunction with(More)
We present "molecular threading", a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and(More)
(21 articles) electron microscopy (2 articles) light microscopy collections Articles on similar topics can be found in the following Email alerting service here in the box at the top right-hand corner of the article or click Receive free email alerts when new articles cite this article-sign up An all-magnetic monochromator/spectrometer system for sub-30 meV(More)
  • 1