Learn More
The mammalian suprachiasmatic nucleus (SCN) is a master circadian pacemaker. It is not known which SCN neurons are autonomous pacemakers or how they synchronize their daily firing rhythms to coordinate circadian behavior. Vasoactive intestinal polypeptide (VIP) and the VIP receptor VPAC(2) (encoded by the gene Vipr2) may mediate rhythms in individual SCN(More)
The present experiments were designed to examine dopamine (DA) modulation of whole cell currents mediated by activation of N-methyl-D-aspartate (NMDA) receptors in visualized neostriatal neurons in slices. First, we assessed the ability of DA, D1 and D2 receptor agonists to modulate membrane currents induced by activation of NMDA receptors. The results of(More)
The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in(More)
Neurons in the suprachiasmatic nucleus (SCN) are responsible for the generation of circadian oscillations, and understanding how these neurons communicate to form a functional circuit is a critical issue. The neurotransmitter GABA and its receptors are widely expressed in the SCN where they mediate cell-to-cell communication. Previous studies have raised(More)
The purpose of the present study was to examine whether cAMP-dependent mechanisms regulated excitatory synaptic transmission in the neostriatum. A brain slice preparation was utilized for intracellular recordings of the excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation. Bath application of forskolin, an activator of adenylate(More)
The goal of this study is to investigate the effect of the hormone melatonin on long-term potentiation and excitability measured by stimulating the Schaffer collaterals and recording the field excitatory postsynaptic potential from the CA1 dendritic layer in hippocampal brain slices from mice. Application of melatonin produced a concentration-dependent(More)
Endogenous processes referred to as circadian oscillators generate many of the daily rhythms in physiology and behavior of a variety of animals including humans. We investigated the possible circadian regulation of acquisition, recall and extinction in two strains of mice (C-57/6J and C-3H). Mice were trained in either the day or night with a tone and(More)
The goal of this study is to investigate the possible circadian regulation of hippocampal excitability and long-term potentiation (LTP) measured by stimulating the Schaffer collaterals (SC) and recording the field excitatory postsynaptic potential (fEPSP) from the CA1 dendritic layer or the population spike (PS) from the soma in brain slices of C3H and C57(More)
Genes responsible for generating circadian oscillations are expressed in a variety of brain regions not typically associated with circadian timing. The functions of this clock gene expression are largely unknown, and in the present study we sought to explore the role of the Per2 (Period 2) gene in hippocampal physiology and learned behaviour. We found that(More)
Circadian regulation of the amplitude of the electroretinogram (ERG) of the cockroach Leucophaea maderae was investigated. Two components of the ERG exhibited circadian rhythms in amplitude. Interestingly, the peak amplitudes for the two rhythms were approximately 12 hr out of phase. The dominant corneal negative potential (the "sustained component")(More)