Christopher Ryan Shaler

Learn More
Influenza viral infection is well-known to predispose to subsequent bacterial superinfection in the lung but the mechanisms have remained poorly defined. We have established a murine model of heterologous infections by an H1N1 influenza virus and Staphylococcus aureus. We found that indeed prior influenza infection markedly increased the susceptibility of(More)
RATIONALE The airway luminal memory CD8 T cells induced by respiratory mucosal immunization in a murine model have been found to be critical to antituberculosis immunity. However, the mechanisms of their maintenance on airway mucosal surface still remain poorly understood. OBJECTIVES Using a model of adenovirus-based intranasal immunization we(More)
The immune mechanisms underlying unsatisfactory pulmonary mucosal protection by parenteral Bacillus Calmette-Guérin (BCG) immunization remain poorly understood. We found that parenteral BCG immunization failed to elicit airway luminal T cells (ALT) whereas it induced significant T cells in the lung interstitium. After Mycobacterium tuberculosis (M.tb)(More)
The granuloma, a hallmark of host defense against pulmonary mycobacterial infection, has long been believed to be an active type 1 immune environment. However, the mechanisms regarding why granuloma fails to eliminate mycobacteria even in immune-competent hosts, have remained largely unclear. By using a model of pulmonary Mycobacterium bovis Bacillus(More)
Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular(More)
BACKGROUND Virus-vectored vaccine is a powerful activator of CD8 T cell-mediated immunity and is especially amenable to respiratory mucosal immunization, offering hopes for use in humans with diminished helper CD4 T cell function. However, whether virus-mediated mucosal immunization can produce immune protective CD8 T cells without the CD4 T cell help(More)
Pulmonary tuberculosis, caused by Mycobacterium tuberculosis (M.tb) represents a leading global health concern, with 8.7 million newly emerging cases, and 1.4 million reported deaths annually. Despite an estimated one third of the world's population being infected, relatively few infected individuals ever develop active clinical disease. The ability of the(More)
In vitro manipulated dendritic cells (DC) have increasingly been used as a promising vaccine formulation against cancer and infectious disease. However, improved understanding of the immune mechanisms is needed for the development of safe and efficacious mucosal DC immunization. We have developed a murine model of respiratory mucosal immunization by using a(More)
Interaction of mycobacteria with the host leads to retarded expression of T helper cell type 1 (Th1) immunity in the lung. However, the immune mechanisms remain poorly understood. Using in vivo and in vitro models of Mycobacterium tuberculosis (M. tb) infection, we find the immunoadaptor DAP12 (DNAX-activating protein of 12 kDa) in antigen-presenting cells(More)
Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes,(More)