Learn More
Many dramatic changes in morphology within the genus Homo have occurred over the past 2 million years or more, including large increases in absolute brain size and decreases in postcanine dental size and skeletal robusticity. Body mass, as the 'size' variable against which other morphological features are usually judged, has been important for assessing(More)
The analysis of humeral asymmetry in Recent human skeletal samples and an extant tennis-player sample documents minimal asymmetry in bone length, little asymmetry in distal humeral articular breadth, but pronounced and variable asymmetry in mid- and distal diaphyseal cross-sectional geometric parameters. More specifically, skeletal samples of normal modern(More)
Temporal trends in postcranial robusticity within the genus Homo are explored by comparing cross-sectional diaphyseal and articular properties of the femur, and to a more limited extent, the humerus, in samples of Recent and earlier Homo. Using both theoretical mechanical models and empirical observations within Recent humans, scaling relationships between(More)
The influence of developmental factors on long-bone cross-sectional geometry and articular size in modern humans is investigated using two approaches: (1) an analysis of the effects of increased mechanical loading on long-bone structure when applied during different developmental periods, using data collected for a study of upper limb bone bilateral(More)
The Homo habilis OH 62 partial skeleton has played an important, although controversial role in interpretations of early Homo locomotor behavior. Past interpretive problems stemmed from uncertain bone length estimates and comparisons using external bone breadth proportions, which do not clearly distinguish between modern humans and apes. Here, true(More)
"Wolff's law" is a concept that has sometimes been misrepresented, and frequently misunderstood, in the anthropological literature. Although it was originally formulated in a strict mathematical sense that has since been discredited, the more general concept of "bone functional adaptation" to mechanical loading (a designation that should probably replace(More)
The relationship between locomotor behavior and long bone structural proportions is examined in 179 individuals and 13 species of hominoids and cercopithecoids. Articular surface areas, estimated from linear caliper measurements, and diaphyseal section moduli (strengths), determined from CT scans, were obtained for the femur, tibia, humerus, radius, and(More)
The increase in lower/upper limb bone length and strength proportions in adult humans compared to most other anthropoid primates is commonly viewed as an adaptation to bipedalism. The ontogenetic development of femoral to humeral proportions is examined here using a longitudinal sample of 20 individuals measured radiographically at semiannual or annual(More)
Body mass estimation equations are generated from long bone cross-sectional diaphyseal and articular surface dimensions in 176 individuals and 12 species of hominoids and cercopithecoids. A series of comparisons is carried out to determine the best body mass predictors for each of several taxonomic/locomotor groupings. Articular breadths are better(More)
Humans demonstrate species-wide bilateral asymmetry in long bone dimensions. Previous studies have documented greater right-biases in upper limb bone dimensions--especially in length and diaphyseal breadth--as well as more asymmetry in the upper limb when compared with the lower limb. Some studies have reported left-bias in lower limb bone dimensions,(More)