Learn More
Many factors have contributed to the inability to successfully employ a marker-based selection scheme for The advent of high throughput molecular technologies has led to complex traits. One major difficulty has been the effec-an expectation that breeding programs will use marker–trait associations to conduct marker-assisted selection (MAS) for traits. Many(More)
The recurrent intermating of F(2) individuals for some number of generations followed by several generations of inbreeding produces an intermated recombinant inbred (IRI) population. Such populations are currently being developed in the plant-breeding community because linkage associations present in an F(2) population are broken down and a population of(More)
The common assumption in quantitative trait locus (QTL) linkage mapping studies that parents of multiple connected populations are unrelated is unrealistic for many plant breeding programs. We remove this assumption and propose a Bayesian approach that clusters the alleles of the parents of the current mapping populations from locus-specific identity by(More)
Two outlines for mixed model based approaches to quantitative trait locus (QTL) mapping in existing maize hybrid selection programs are presented: a restricted maximum likelihood (REML) and a Bayesian Markov Chain Monte Carlo (MCMC) approach. The methods use the in-silico-mapping procedure developed by Parisseaux and Bernardo (2004) as a starting point. The(More)
Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake(More)
Genetic linkage and association studies are empowered by proper modeling of relatedness among individuals. Such relatedness can be inferred from marker and/or pedigree information. In this study, the genetic relatedness among n inbred individuals at a particular locus is expressed as an n x n square matrix Q. The elements of Q are identity-by-descent(More)
In situ Transmission Electron Microscopy (TEM) techniques can potentially fill in gaps in the current understanding interfacial phenomena in complex oxides. Select multiferroic oxide materials, such as BiFeO(3) (BFO), exhibit ferroelectric and magnetic order, and the two order parameters are coupled through a quantum-mechanical exchange interaction. The(More)
Genetic regulation is a key component in development, but a clear understanding of the structure and dynamics of genetic networks is not yet at hand. In this work we investigate these properties within an artificial genome model originally introduced by Reil [15]. We analyze statistical properties of randomly generated genomes both on the sequence-and(More)
Genetic regulation is a key component in development, but a clear understanding of the structure and dynamics of genetic networks is not yet at hand. In this paper we investigate these properties within an artificial genome model originally introduced by Reil [17]. We analyze statistical properties of randomly generated genomes both on the sequence-and(More)
Diagnosing a coupled system with linear inverse modelling (LIM) can provide insight into the nature and strength of the coupling. This technique is applied to the cold season output of the GFDL GCM, forced by observed tropical Pacific SSTs and including a slab mixed layer ocean model elsewhere. It is found that extratropical SST anomalies act to enhance(More)