Christopher R. Parish

Learn More
The glycolytic phenotype is a widespread phenomenon in solid cancer forms, including breast cancer. Dichloroacetate (DCA) has recently been proposed as a novel and relatively non-toxic anti-cancer agent that can reverse the glycolytic phenotype in cancer cells through the inhibition of pyruvate dehydrogenase kinase. We have examined the effect of DCA(More)
AIMS/HYPOTHESIS This study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack. METHODS Immunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan(More)
PURPOSE The objectives of this study were to determine whether high-glucose-induced upregulation of heparanase (HPSE) expression and differential heparanase expression in human retinal vascular endothelial cells (HRECs) can alter HREC migration and proliferation. We also aimed to determine whether HREC migration and proliferation correlate with the levels(More)
Using experimental autoimmune encephalomyelitis (EAE) in the rat as a model of central nervous system (CNS) inflammation, activated and quiescent T lymphocytes with different antigen specificities were labelled with the fluorescent dye Hoechst 33342 and tested by fluorescence microscopy for their ability to accumulate in different regions of the spinal cord(More)
Carboxyfluorescein succinimidyl ester (CFSE) is an effective and popular means to monitor lymphocyte division. CFSE covalently labels long-lived intracellular molecules with the fluorescent dye, carboxyfluorescein. Thus, when a CFSE-labeled cell divides, its progeny are endowed with half the number of carboxyfluorescein-tagged molecules and thus each cell(More)
There is evidence that the classical complement pathway may be activated via a "C1-tickover" mechanism, analogous to the C3-tickover of the alternative pathway. We have quantitated and characterized this pathway of complement activation. Analysis of freshly collected mouse and human plasma revealed that spontaneous C3 activation rapidly occurred with the(More)
Currently most attempts at cancer immunotherapy involve the generation of CD8(+) cytotoxic T lymphocytes (CTLs) against tumor-associated antigens. Many tumors, however, have been immunoselected to evade recognition by CTLs and thus alternative approaches to cancer immunotherapy are urgently needed. Here we demonstrate that CD4(+) T cells that recognize a(More)
Heparan sulfate (HS) is a highly acidic linear polysaccharide with a very variable structure. It is ubiquitously expressed on cell surfaces and in the extracellular matrix and basement membrane of mammalian tissues. Synthesized attached to various core proteins to form HS-proteoglycans, HS is capable of interacting with various polypeptides and exerting(More)
Heparanase (Hpse) is the only known mammalian endo-β-d-glucuronidase that degrades the glycosaminoglycan heparan sulfate (HS), found attached to the core proteins of heparan sulfate proteoglycans (HSPGs). Hpse plays a homeostatic role in regulating the turnover of cell-associated HS and also degrades extracellular HS in basement membranes (BMs) and the(More)