Christopher R. K. Glasson

  • Citations Per Year
Learn More
Photoinduced formation, separation, and buildup of multiple redox equivalents are an integral part of cycles for producing solar fuels in dye-sensitized photoelectrosynthesis cells (DSPECs). Excitation wavelength-dependent electron injection, intra-assembly electron transfer, and pH-dependent back electron transfer on TiO(2) were investigated for the(More)
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of(More)
Dye-sensitized photoelectrosynthesis cells (DSPECs) represent a promising approach to solar fuels with solar-energy storage in chemical bonds. The targets are water splitting and carbon dioxide reduction by water to CO, other oxygenates, or hydrocarbons. DSPECs are based on dye-sensitized solar cells (DSSCs) but with photoexcitation driving physically(More)
The capture and storage of solar energy requires chromophores that absorb light throughout the solar spectrum. We report here the synthesis, characterization, electrochemical, and photophysical properties of a series of Ru(II) polypyridyl complexes of the type [Ru(bpy)2(N-N)](2+) (bpy = 2,2'-bipyridine; N-N is a bidentate polypyridyl ligand). In this(More)
The complex [Ru(tpy)(bpy)(S)](2+) (tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine, S = solvent) is an electrocatalyst for water or proton reduction to hydrogen and for reduction of acetone to iso-propanol in CH3CN. Electrocatalysis is initiated by sequential 1e(-) reductions at the tpy and bpy ligands followed by addition of water to give a ruthenium(More)
Water-stable, surface-bound chromophores, catalysts, and assemblies are an essential element in dye-sensitized photoelectrosynthesis cells for the generation of solar fuels by water splitting and CO2 reduction to CO, other oxygenates, or hydrocarbons. Phosphonic acid derivatives provide a basis for stable chemical binding on metal oxide surfaces. We report(More)