Christopher R. German

Learn More
Deep-sea hydrothermal vents and cold seeps are submarine springs where nutrient-rich fluids emanate from the sea floor. Vent and seep ecosystems occur in a variety of geological settings throughout the global ocean and support food webs based on chemoautotrophic primary production. Most vent and seep invertebrates arrive at suitable habitats as larvae(More)
Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the(More)
Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean(More)
The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four(More)
The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre.(More)
Atmospheric forcing, which is known to have a strong influence on surface ocean dynamics and production, is typically not considered in studies of the deep sea. Our observations and models demonstrate an unexpected influence of surface-generated mesoscale eddies in the transport of hydrothermal vent efflux and of vent larvae away from the northern East(More)
In deep-sea hydrothermal environments, steep chemical and thermal gradients, rapid and turbulent mixing and biologic processes produce a multitude of diverse mineral phases and foster the growth of a variety of chemosynthetic micro-organisms. Many of these microbial species are associated with specific mineral phases, and the interaction of mineral and(More)
Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding(More)
The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary(More)