Learn More
The N-terminal fusion domain of the HIV-1 gp41 envelope glycoprotein is responsible for initiating the fusion of viral and cellular membranes, leading to the subsequent infection of the host cell by HIV-1. We have investigated the backbone structure and dynamics of the 30 N-terminal residues of HIV-1 gp41 in membrane-mimicking environments using NMR(More)
Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in(More)
The crystal structures of the cytoplasmic domain of the putative zinc transporter CzrB in the apo and zinc-bound forms reported herein are consistent with the protein functioning in vivo as a homodimer. NMR, X-ray scattering, and size-exclusion chromatography provide support for dimer formation. Full-length variants of CzrB in the apo and zinc-loaded states(More)
Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do(More)
We describe a magic-angle spinning NMR experiment for selective (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled solids, where multiple (13)C-(15)N and (13)C-(13)C interactions complicate the accurate measurement of structurally interesting, weak (13)C-(15)N dipolar couplings. The new experiment, termed FSR (frequency selective REDOR),(More)
The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating(More)
We describe three-dimensional magic-angle-spinning NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. The approaches employ transferred echo double resonance (TEDOR) for (13)C-(15)N coherence transfer and (15)N and (13)C frequency labeling for site-specific resolution, and build on(More)
In recent years, a number of magic-angle spinning (MAS) solidstate nuclear magnetic resonance (SSNMR) methods have been developed1 for 13C and 15N resonance assignments in uniformly 13C,15N-labeled peptides and proteins.2 The 13CO, 13CR, 13Câ, and amide 15N chemical shifts can be used to estimate the backbone torsion angles φ and ψ.3 Additional constraints(More)
Amyloid aggregates of a C-truncated Y145Stop mutant of human prion protein, huPrP23-144, associated with a heritable amyloid angiopathy, have previously been shown to contain a compact, relatively rigid, and beta-sheet-rich approximately 30-residue amyloid core near the C-terminus under physiologically relevant conditions. In contrast, the remaining(More)
We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range (15)N-(13)C(methyl) dipolar couplings in uniformly (13)C, (15)N-enriched peptides and proteins with high resolution and(More)