Learn More
Ca(2+) mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP(3)), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP(3) and cyclic ADP ribose cause the release of Ca(2+) from sarcoplasmic/endoplasmic reticulum stores(More)
Specialized O2-sensing cells exhibit a particularly low threshold to regulation by O2 supply and function to maintain arterial pO2 within physiological limits. For example, hypoxic pulmonary vasoconstriction optimizes ventilation-perfusion matching in the lung, whereas carotid body excitation elicits corrective cardio-respiratory reflexes. It is generally(More)
In arterial myocytes the Ca(2+) mobilizing messenger NAADP evokes spatially restricted Ca(2+) bursts from a lysosome-related store that are subsequently amplified into global Ca(2+) waves by Ca(2+)-induced Ca(2+)-release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs). Lysosomes facilitate this process by forming clusters that(More)
It is generally accepted that the mobilisation of intracellular Ca2+ stores plays a pivotal role in the regulation of arterial smooth muscle function, paradoxically during both contraction and relaxation. However, the spatiotemporal pattern of different Ca2+ signals that elicit such responses may also contribute to the regulation of, for example,(More)
Early detection of an O2 deficit in the bloodstream is essential to initiate corrective changes in the breathing pattern of mammals. Carotid bodies serve an essential role in this respect; their type I cells depolarize when O2 levels fall, causing voltage-gated Ca2+ entry. Subsequent neurosecretion elicits increased afferent chemosensory fiber discharge to(More)
Inhibitors of mitochondrial energy metabolism have long been known to be potent stimulants of the carotid body, yet their mechanism of action remains obscure. We have therefore investigated the effects of rotenone, myxothiazol, antimycin A, cyanide (CN(-)) and oligomycin on isolated carotid body type I cells. All five compounds caused a rapid rise in(More)
1. The effect has been examined of the accessory alpha2-delta and beta subunits on the properties of alpha1G currents expressed in monkey COS-7 cells and Xenopus oocytes. 2. In immunocytochemical experiments, the co-expression of alpha2-delta increased plasma membrane localization of expressed alpha1G and conversely, the heterologous expression of alpha1G(More)
Vital homeostatic mechanisms monitor O2 supply and adjust respiratory and circulatory function to meet demand. The pulmonary arteries and carotid bodies are key systems in this respect. Hypoxic pulmonary vasoconstriction (HPV) aids ventilation-perfusion matching in the lung by diverting blood flow from areas with an O2 deficit to those rich in O2, while a(More)
AMP-activated protein kinase (AMPK) is a master metabolic regulator that responds to the AMP: ATP ratio and promotes ATP production when the cell is low on energy. There are two isoforms of the catalytic alpha subunit, AMPKα1 and AMPKα2. Here, we describe the production of a small interfering RNA (siRNA) and a short hairpin RNA (shRNA) targeting both(More)