Learn More
Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these(More)
A multitude of biological processes requires the participation of specific cations, such as H + , Na + , K + , Ca 2+ , and Mg 2+. Many of these processes can take place only when proteins have the ability to discriminate between different ions with a very high fidelity. How this is possible is a fundamental question that has fascinated scientists for a long(More)
Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177,(More)
OBJECTIVE Recent genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) identified 9 novel risk loci. Discovery of functional variants within genes at these loci is required to confirm their role in Alzheimer disease (AD). Single nucleotide polymorphisms that influence gene expression (eSNPs) constitute an important class of(More)
Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer's disease (LOAD) risk and plasma amyloid β (Aβ) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aβ, although the mechanism of(More)
The high membrane permeability of H2S was studied using polarizable molecular dynamics simulations of a DPPC lipid bilayer. The solubility-diffusion model predicts permeability coefficients of H2S and H2O that are in good agreement with experiment. The computed diffusion coefficient profile shows H2S to diffuse at a lower rate than H2O, but the barrier for(More)
The calculation of molecular electric moments, polarizabilities, and electrostatic potentials is a widespread application of quantum chemistry. Although a range of wave function and density functional theory (DFT) methods have been applied in these calculations, combined with a variety of basis sets, there has not been a comprehensive evaluation of how(More)
Antifreeze glycoproteins (AFGPs) are a unique class of proteins that are found in many organisms inhabiting subzero environments and ensure their survival by preventing ice growth in vivo. During the last several years, our laboratory has synthesized functional C-linked AFGP analogues (3 and 5) that possess custom-tailored antifreeze activity suitable for(More)
Electrophysiological studies have established that the permeation of Ba(2+) ions through the KcsA K(+)-channel is impeded by the presence of K(+) ions in the external solution, while no effect is observed for external Na(+) ions. This Ba(2+) "lock-in" effect suggests that at least one of the external binding sites of the KcsA channel is thermodynamically(More)
Predicting the rate of nonfacilitated permeation of solutes across lipid bilayers is important to drug design, toxicology, and signaling. These rates can be estimated using molecular dynamics simulations combined with the inhomogeneous solubility-diffusion model, which requires calculation of the potential of mean force and position-dependent diffusivity of(More)