Christopher N. Roman

Learn More
The effects of permanent forebrain lesions on conditioned taste aversions (CTAs) and conditioned odor aversions (COAs) were examined in 3 experiments. In Experiment 1, lesions of the bed nucleus of the stria terminalis had no influence on CTA or COA acquisition. Although lesions of the lateral hypothalamus induced severe hypodipsia in Experiment 2, they did(More)
The present study was designed to examine whether lesions of the insular cortex (IC; Experiment 1), the basolateral amygdala (BLA) or medial amygdala (MeA; Experiment 2) influence the neophobic reactions to orally consumed liquid stimuli. Three different types of stimuli were used: taste (0.5% saccharin), olfactory (0.1% amyl acetate), and trigeminal (0.01(More)
The present study tested the hypothesis that lesions of the insular cortex of the rat retard the acquisition of conditioned taste aversions (CTAs) because of an impairment in the detection of the novelty of taste stimuli. Demonstrating the expected latent inhibition effect, nonlesioned control subjects acquired CTAs more rapidly when the conditioned(More)
Lesions of the insular cortex (IC) attenuate acquisition of conditioned taste aversions (CTAs). We have suggested that this impairment is the expected consequence of a failure of IC-lesioned (ICX) rats to recognize unfamiliar taste stimuli as novel. That is, ICX rats treat novel taste stimuli as if they are familiar and as a result show a latent(More)
The present experiment examined the influence of insular cortex (IC) lesions on the intake of a taste stimulus in a consummatory procedure that used morphine as the unconditioned stimulus. In normal rats, morphine caused a rapid reduction in saccharin intake when the taste was novel but not when it was familiar. Irrespective of stimulus novelty, morphine(More)
Intake of an unconditionally preferred taste stimulus (e.g., saccharin) is reduced by contingent administration of a drug of abuse (e.g., morphine). We examined the influence of insular cortex (IC) lesions on morphine-induced suppression of an olfactory cue and two taste stimuli with different levels of perceived innate reward value. Two major findings(More)
Large area mapping at high resolution underwater continues to be constrained by sensor-level environmental constraints and the mis-match between available navigation and sensor accuracy. In this paper, advances are presented that exploit aspects of the sensing modality, and consistency and redundancy within local sensor measurements to build high-resolution(More)
— This paper presents an algorithm to improve sub-sea acoustic multibeam bottom mapping based on the simultaneous mapping and localization (SLAM) methodology. Multibeam bathymetry from underwater water vehicles can yield valuable large scale terrain maps of the sea floor, but the overall accuracy of these maps is typically limited by the accuracy of the(More)
Rats that are expecting a high value reward (e.g., 1.0 M sucrose) show an exaggerated underresponding when they are instead given a low value reward (e.g., 0.15% saccharin), an effect termed successive negative contrast (SNC). In the present experiment, insular cortex-lesioned (ICX) rats showed normal responsivity to sucrose and saccharin prior to the(More)