Christopher M. Thomas

Learn More
The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids(More)
The Tra1 region of broad host range IncP alpha plasmid RK2 encodes proteins essential for its promiscuous conjugative transfer and includes oriT, the site at which nicking occurs to initiate transfer replication. Unregulated expression of the Tra1 region genes would be likely to place a major burden on the host. To investigate the control of these genes the(More)
The korAB operon of broad-host-range plasmid RK2 encodes five genes, two of which, incC and korB, belong to the parA and parB families, respectively, of genome partitioning functions. Both korB and a third gene, korA, are responsible for coordinate regulation of operons encoding replication, transfer, and stable inheritance functions. Overexpression of incC(More)
BACKGROUND Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen(More)
Active partitioning of low-copy number plasmids requires two proteins belonging to the ParA and ParB families and a cis-acting site which ParB acts upon. Active separation of clusters of plasmid molecules to the defined locations in the cell before cell division ensures stable inheritance of the plasmids. The central control operon of IncP-1 plasmids codes(More)
The central control region (Ctl) of lncP plasmids is associated with two phenotypes : the coordinate expression of replication and transfer genes; and the ability to increase the segregational stability of a low-copy-number test plasmid. This region of the IncPp plasmid R751 shows significant sequence divergence from the IncPa plasmid RK2 sequence, and two(More)
The proteins encoded by chromosomal homologues of the parA and parB genes of many bacterial plasmids have been implicated in chromosome partitioning. Unlike their plasmid counterparts, mutant phenotypes produced by deleting these genes have so far been elusive or weakly expressed, except during sporulation. Here the properties of Pseudomonas putida strains(More)
ParA Walker ATPases form part of the machinery that promotes better-than-random segregation of bacterial genomes. ParA proteins normally occur in one of two forms, differing by their N-terminal domain (NTD) of approximately 100 aa, which is generally associated with site-specific DNA binding. Unusually, and for as yet unknown reasons, parA (incC) of IncP-1(More)
BACKGROUND Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of(More)