Learn More
Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we(More)
We present a new approach for verifying programs written in GP (for Graph Programs), an experimental programming language for performing computations on graphs at a high level of abstraction. Taking a labelled graph as input, a graph program nondeterministically applies to it a number of graph transformation rules, directed by simple control constructs such(More)
To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs , there are currently no general verification approaches that(More)
Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper(More)
Bidirectional model transformations (bx) are mechanisms for automatically restoring consistency between multiple concurrently modified models. They are, however, challenging to implement; many model transformation languages not supporting them at all. In this paper, we propose an approach for automatically obtaining the consistency guarantees of bx without(More)