Learn More
A dentine protein extraction protocol was modified in order to identify matrix metalloproteinase gelatinolytic activities in the non-mineralized and mineralized phases of human dentine. Dentine proteins from 24 individual permanent molars from patients aged 15-73 years were sequentially extracted, first with guanidinium chloride (G1 extract), then EDTA (E(More)
Recombinant collagen-binding domain (rCBD) comprising the three fibronectin type II-like modules of human gelatinase A was found to compete the zymogen form of this matrix metalloproteinase from the cell surface of normal human fibroblasts in culture. Upon concanavalin A treatment of cells, the induced cellular activation of gelatinase A was markedly(More)
In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information(More)
The mechanisms of neurodegeneration that result in human immunodeficiency virus (HIV) type 1 dementia have not yet been identified. Here, we report that HIV-infected macrophages secrete the zymogen matrix metalloproteinase-2 (MMP-2), which is activated by exposure to MT1-MMP on neurons. Stromal cell-derived factor 1 alpha (SDF-1), a chemokine overexpressed(More)
Monocyte chemoattractant protein (MCP)-3 is inactivated upon cleavage by the matrix metalloproteinase (MMP) gelatinase A (MMP-2). We investigated the susceptibility to proteolytic processing of the 4 human MCPs by 8 recombinant MMPs to determine whether MCP-3 is an isolated example or represents a general susceptibility of chemokines to proteolytic(More)
Chemokines provide directional cues for leukocyte migration and activation that are essential for normal leukocytic trafficking and for host responses during processes such as inflammation, infection, and cancer. Recently we reported that matrix metalloproteinases (MMPs) modulate the activity of the CC chemokine monocyte chemoattractant protein-3 by(More)
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity(More)
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein(More)
The tissue inhibitors of metalloproteinases 1-4 (TIMPs) have discrete regulatory roles in the activation of matrix metalloproteinase (MMP)-2 (gelatinase A), an important basement membrane-degrading MMP pivotal to tumor metastasis and angiogenesis. TIMP-2 binds to both the hemopexin C domain of progelatinase A and the active site of membrane type-1 (MT1)(More)
Although matrix metalloproteinases (MMPs) are among the potential key mediators of cancer invasion, their involvement in premalignant lesions and conditions is not clarified. Therefore, we studied, using in situ hybridization, immunohistochemistry and zymography the expression and distribution of MMP-1 and -2, and their tissue inhibitors (TIMPs -1, -2 and(More)