Christopher M. Grulke

Learn More
MOTIVATION Advances in the field of cheminformatics have been hindered by a lack of freely available tools. We have created Chembench, a publicly available cheminformatics portal for analyzing experimental chemical structure-activity data. Chembench provides a broad range of tools for data visualization and embeds a rigorous workflow for creating and(More)
BACKGROUND Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for(More)
Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the publication rate in medical research in 2006. That trend appears to continue as a(More)
Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining(More)
BACKGROUND Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion(More)
UNLABELLED As increasing amounts of biomonitoring survey data become available, a new discipline focused on converting such data into estimates of chemical exposures has developed. Reverse dosimetry uses a pharmacokinetic model along with measured biomarker concentrations to determine the plausible exposure concentrations-- a critical step to incorporate(More)
The ability to determine the mode of action (MOA) for a diverse group of chemicals is a critical part of ecological risk assessment and chemical regulation. However, existing MOA assignment approaches in ecotoxicology have been limited to a relatively few MOAs, have high uncertainty, or rely on professional judgment. In this study, machine based learning(More)
  • 1