Learn More
—Anomaly detection is an important challenge for tasks such as fault diagnosis and intrusion detection in energy constrained wireless sensor networks. A key problem is how to minimise the communication overhead in the network while performing in-network computation when detecting anomalies. Our approach to this problem is based on a formulation that uses(More)
Distributed denial-of-service attack is one of the greatest threats to the Internet today. One of the biggest diiculties in defending against this attack is that attackers always use incorrect, or \spoofed" IP source addresses to disguise their true origin. In this paper, we present a packet marking algorithm which allows the victim to traceback the(More)
In this paper, we propose a simple but robust scheme to detect denial of service attacks (including distributed denial of service attacks) by monitoring the increase of new IP addresses. Unlike previous proposals for bandwidth attack detection schemes which are based on monitoring the traffic volume, our scheme is very effective for highly distributed(More)
Graphs provide powerful abstractions of relational data, and are widely used in fields such as network management, web page analysis and sociology. While many graph representations of data describe dynamic and time evolving relationships, most graph mining work treats graphs as static entities. Our focus in this paper is to discover regions of a graph that(More)
This article presents a survey of denial of service attacks and the methods that have been proposed for defense against these attacks. In this survey, we analyze the design decisions in the Internet that have created the potential for denial of service attacks. We review the state-of-art mechanisms for defending against denial of service attacks, compare(More)
—In this paper, we introduce a practical scheme to defend against Distributed Denial of Service (DDoS) attacks based on IP source address filtering. The edge router keeps a history of all the legitimate IP addresses which have previously appeared in the network. When the edge router is overloaded, this history is used to decide whether to admit an incoming(More)
Most current network intrusion detection systems employ signature-based methods or data mining-based methods which rely on labeled training data. This training data is 90 typically expensive to produce. Moreover, these methods have difficulty in detecting new types of attack. In this paper, we have discussed anomaly based instruction detection, pros and(More)
Security is a critical challenge for creating robust and reliable sensor networks. For example, routing attacks have the ability to disconnect a sensor network from its central base station. In this paper, we present a method for intrusion detection in wireless sensor networks. Our intrusion detection scheme uses a clustering algorithm to build a model of(More)