Christopher L. Poirel

  • Citations Per Year
Learn More
MOTIVATION Many techniques have been developed to compute the response network of a cell. A recent trend in this area is to compute response networks of small size, with the rationale that only part of a pathway is often changed by disease and that interpreting small subnetworks is easier than interpreting larger ones. However, these methods may not uncover(More)
Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for(More)
Top-down analyses in systems biology can automatically find correlations among genes and proteins in large-scale datasets. However, it is often difficult to design experiments from these results. In contrast, bottom-up approaches painstakingly craft detailed models that can be simulated computationally to suggest wet lab experiments. However, developing the(More)
Signaling pathways are a cornerstone of systems biology. Several databases store high-quality representations of these pathways that are amenable for automated analyses. Despite painstaking and manual curation, these databases remain incomplete. We present PATHLINKER, a new computational method to reconstruct the interactions in a signaling pathway of(More)
Signaling pathways function as the information-passing mechanisms of cells. A number of databases with extensive manual curation represent the current knowledge base for signaling pathways. These databases motivate the development of computational approaches for prediction and analysis. Such methods require an accurate and computable representation of(More)
Analysis of molecular interaction networks is pervasive in systems biology. This research relies almost entirely on graphs for modeling interactions. However, edges in graphs cannot represent multi-way interactions among molecules, which occur very often within cells. Hypergraphs may be better representations for such interactions, since hyperedges can(More)
Summary Networks have become ubiquitous in systems biology. Visualization is a crucial component in their analysis. However, collaborations within research teams in network biology are hampered by software systems that are either specific to a computational algorithm, create visualizations that are not biologically meaningful, or have limited features for(More)
  • 1