Christopher L. Frank

Learn More
The Disrupted in Schizophrenia 1 (DISC1) gene is disrupted by a balanced chromosomal translocation (1; 11) (q42; q14.3) in a Scottish family with a high incidence of major depression, schizophrenia, and bipolar disorder. Subsequent studies provided indications that DISC1 plays a role in brain development. Here, we demonstrate that suppression of DISC1(More)
P58(IPK) is an Hsp40 family member known to inhibit the interferon (IFN)-induced, double-stranded RNA-activated, eukaryotic initiation factor 2alpha (eIF2alpha) protein kinase R (PKR) by binding to its kinase domain. We find that the stress of unfolded proteins in the endoplasmic reticulum (ER) activates P58(IPK) gene transcription through an ER(More)
Primary autosomal-recessive microcephaly (MCPH) and Majewski osteodysplastic primordial dwarfism type II (MOPDII) are both genetic diseases that result in decreased brain size at birth. MCPH is thought to arise from alterations in the size of the neural progenitor pool, but the cause of this defect has not been thoroughly explored. We find that one of the(More)
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited(More)
Aberrant cell-cycle activity and DNA damage are emerging as important pathological components in various neurodegenerative conditions. However, their underlying mechanisms are poorly understood. Here, we show that deregulation of histone deacetylase 1 (HDAC1) activity by p25/Cdk5 induces aberrant cell-cycle activity and double-strand DNA breaks leading to(More)
Centrosome functions are important in multiple brain developmental processes. Proper functioning of the centrosome relies on assembly of protein components into the pericentriolar material. This dynamic assembly is mediated by the trafficking of pericentriolar satellites, which are comprised of centrosomal proteins. Here we demonstrate that trafficking of(More)
To identify chromatin mechanisms of neuronal differentiation, we characterized chromatin accessibility and gene expression in cerebellar granule neurons (CGNs) of the developing mouse. We used DNase-seq to map accessibility of cis-regulatory elements and RNA-seq to profile transcript abundance across postnatal stages of neuronal differentiation in vivo and(More)
Organogenesis is a highly integrated process with a fundamental requirement for precise cell cycle control. Mechanistically, the cell cycle is composed of transitions and thresholds that are controlled by coordinated post-translational modifications. In this study, we describe a novel mechanism controlling the persistence of the transcription factor ATF4 by(More)
Recent studies have demonstrated that boundaries separating a cycling cell from a postmitotic neuron are not as concrete as expected. Novel and unique physiological functions in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. These "core" cell cycle regulators serve diverse postmitotic functions that(More)
Thousands of compounds in the environment have not been characterized for developmental neurotoxicity (DNT) hazard. To address this issue, methods to screen compounds rapidly for DNT hazard evaluation are necessary and are being developed for key neurodevelopmental processes. In order to develop an assay for network formation, this study evaluated effects(More)