Learn More
The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize(More)
In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating(More)
We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e + e − and e − e − modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realistic colliding beam distributions are used, which include dynamic effects of the beam transport from the(More)
PURPOSE Laser therapy for diabetic macular edema and other retinal diseases has been used within a wide range of laser settings: from intense burns to nondamaging exposures. However, there has been no algorithm for laser dosimetry that could determine laser parameters yielding a predictable extent of tissue damage. This multimodal imaging and structural(More)
PURPOSE Subthreshold retinal phototherapy demonstrated clinical efficacy for the treatment of diabetic macular edema without visible signs of retinal damage. To assess the range of cellular responses to sublethal hyperthermia, expression of the gene encoding a 70 kDa heat shock protein (HSP70) was evaluated after laser irradiation using a transgenic(More)
PURPOSE To determine the long-term safety of high-density subvisible diode micropulse photocoagulation (810 nm), compare the clinical findings with computational modeling of tissue hyperthermia and to report results for a subset of eyes treated for diabetic macular edema (ME) documented pre- and postoperatively by spectral-domain optical coherence(More)
PURPOSE To evaluate the safety, selectivity, and healing of retinal lesions created using a continuous line scanning laser. METHODS A 532-nm Nd:YAG laser (PASCAL) with retinal beam diameters of 40 μm and 66 μm was applied to 60 eyes of 30 Dutch-belted rabbits. Retinal exposure duration varied from 15 μs to 60 μs. Lesions were acutely assessed by(More)
Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are(More)
BACKGROUND AND OBJECTIVE The 577-nm (yellow) laser provides an alternative to the 532-nm (green) laser in retinal photocoagulation, with potential benefits in macular treatment and through ocular opacities. To assess relative risk of thermomechanical rupture of Bruch's membrane with yellow laser in photocoagulation, the therapeutic window, the ratio of(More)
Synchronization of chaotic systems has been studied extensively, and especially, the possible applications to the communication systems motivated many research areas. We demonstrate the effect of the frequency bandwidth limitations in the communication channel on the synchronization of two unidirectionally coupled Mackey-Glass (MG) analog circuits, both(More)