Christopher K. R. T. Jones

Learn More
The electrical dynamics in the heart is modeled by a two-component PDE. Using geometric singular perturbation theory, it is shown that a traveling pulse solution, which corresponds to a single heartbeat, exists. One key aspect of the proof involves tracking the solution near a point on the slow manifold that is not normally hyperbolic. This is achieved by(More)
We derive a model for the propagation of short pulses in nonlinear media. The model is a higher order regularization of the short pulse equation (SPE). The regularization term arises as the next term in the expansion of the susceptibility in derivation of the SPE. Without the regularization term there do not exist traveling pulses in the class of piecewise(More)
The evolution of optical pulses in fiber optic communication systems with strong, higher order dispersion management is modeled by a cubic nonlinear Schrödinger equation with periodically varying linear dispersion at second and third order. Through an averaging procedure, we derive an approximate model for the slow evolution of such pulses, and show that(More)
  • 1