Christopher J. Staiger

Learn More
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium(More)
Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are(More)
Self-incompatibility (SI) prevents inbreeding through specific recognition and rejection of incompatible pollen. In incompatible Papaver rhoeas pollen, SI triggers a Ca2+ signaling cascade, resulting in the inhibition of tip growth, actin depolymerization, and programmed cell death (PCD). We investigated whether actin dynamics were implicated in regulating(More)
The organization of actin filaments into large ordered structures is a tightly controlled feature of many cellular processes. However, the mechanisms by which actin filament polymerization is initiated from the available pool of profilin-bound actin monomers remain unknown in plants. Because the spontaneous polymerization of actin monomers bound to profilin(More)
Remodeling of actin filament arrays in response to biotic and abiotic stimuli is thought to require precise control over the generation and availability of filament ends. Heterodimeric capping protein (CP) is an abundant filament capper, and its activity is inhibited by membrane signaling phospholipids in vitro. How exactly CP modulates the properties of(More)
Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including(More)
BACKGROUND Cytoplasmic streaming is a conspicuous feature of plant cell behaviour, in which organelles and vesicles shuttle along cytoplasmic strands that contain actin filaments. The mechanisms that regulate streaming and the formation of actin filament networks are largely unknown, but in all likelihood involve actin-binding proteins. The monomeric(More)
The cytoskeleton is a key regulator of plant morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. During the self-incompatibility response of Papaver rhoeas L. (field poppy) pollen, the actin filament network is rapidly depolymerized by a flood of cytosolic free Ca2+ that results in cessation of tip growth and prevention of(More)
Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent(More)
Taking advantage of the high conservation of the cytoskeleton building blocks actin and tubulin between plant and animal kingdoms, we developed a functional genomic screen for the isolation of new plant cytoskeleton-binding proteins that uses a mammalian cell expression system. A yellow fluorescent protein (YFP)-fusion cDNA library from Arabidopsis was(More)