Christopher J. Staiger

Learn More
Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are(More)
The organization of actin filaments into large ordered structures is a tightly controlled feature of many cellular processes. However, the mechanisms by which actin filament polymerization is initiated from the available pool of profilin-bound actin monomers remain unknown in plants. Because the spontaneous polymerization of actin monomers bound to profilin(More)
A novel kinesin, GhKCH1, has been identified from cotton (Gossypium hirsutum) fibers. GhKCH1 has a centrally located kinesin catalytic core, a signature neck peptide of minus end-directed kinesins, and a unique calponin homology (CH) domain at its N terminus. GhKCH1 and other CH domain-containing kinesins (KCHs) belong to a distinct branch of the minus(More)
Signal perception and the integration of signals into networks that effect cellular changes is essential for all cells. The self-incompatibility (SI) response in field poppy pollen triggers a Ca(2+)-dependent signaling cascade that results in the inhibition of incompatible pollen. SI also stimulates dramatic alterations in the actin cytoskeleton. By(More)
Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent(More)
A dynamic network of polymers, the actin cytoskeleton, co-ordinates numerous fundamental cellular processes. In pollen tubes, organelle movements and cytoplasmic streaming, organization of the tip zone, vesicle trafficking, and tip growth have all been linked to actin-based function. Further, during the self-incompatibility response of Papaver rhoeas,(More)
Self-incompatibility (SI) prevents inbreeding through specific recognition and rejection of incompatible pollen. In incompatible Papaver rhoeas pollen, SI triggers a Ca2+ signaling cascade, resulting in the inhibition of tip growth, actin depolymerization, and programmed cell death (PCD). We investigated whether actin dynamics were implicated in regulating(More)
In a plant cell, a subset of actin filaments function as a scaffold that positions the endomembrane system and acts as a substrate on which organelle motility occurs. Other actin filament arrays appear to be more dynamic and reorganize in response to growth signals and external cues. The distorted group of trichome morphology mutants provides powerful(More)
Actin dynamics, or the rapid turnover of actin filaments, play a central role in numerous cellular processes. A large and diverse cast of characters, accessory proteins known as actin-binding proteins, modulate actin dynamics. They do this by binding to the monomer pool, interacting with the side and ends of filaments, creating breaks along a filament, and(More)
BACKGROUND The rapid dynamics of actin filaments is a fundamental process that powers a large number of cellular functions. However, the basic mechanisms that control and coordinate such dynamics remain a central question in cell biology. To reach beyond simply defining the inventory of molecules that control actin dynamics and to understand how these(More)