Christopher J. Rhee

Learn More
The frequency-response of pressure autoregulation is not well delineated; therefore, the optimal frequency of arterial blood pressure (ABP) modulation for measuring autoregulation is unknown. We hypothesized that cerebrovascular autoregulation is band-limited and delineated by a cutoff frequency for which ABP variations induce cerebrovascular reactivity.(More)
abstract New noninvasive methods for monitoring cerebrovascular pressure reactivity coupled with a blood-based assay for brain-specific injury in preterm infants could allow early diagnosis of brain injury and set the stage for improved timing and effectiveness of interventions. Using an adaptation of near-infrared spectroscopy, we report a case of a very(More)
INTRODUCTION Acute kidney injury (AKI) affects ~30% of hospitalized neonates. Critical to advancing our understanding of neonatal AKI is collaborative research among neonatologists and nephrologists. The Neonatal Kidney Collaborative (NKC) is an international, multidisciplinary group dedicated to investigating neonatal AKI. The AWAKEN study (Assessment of(More)
BACKGROUND The upper limit of cerebrovascular pressure autoregulation (ULA) is inadequately characterized. OBJECTIVE To delineate the ULA in an infant swine model. METHODS Neonatal piglets with sham surgery (n = 9), interventricular fluid infusion (INF) (n = 10), controlled cortical impact (CCI) (n = 10), or CCI + INF (n = 11) had intracranial pressure(More)
Premature infants are at risk of vascular neurological insults. Hypotension and hypertension are considered injurious, but neither condition is defined with consensus. Critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow ceases. CrCP may serve to define subject-specific low or high ABP. Our objective was to(More)
Premature infants are at an increased risk of intraventricular hemorrhage (IVH). The roles of hypotension and hyperemia are still debated. Critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow (CBF) ceases. When diastolic ABP is equal to CrCP, CBF occurs only during systole. The difference between diastolic ABP(More)
  • 1