Christopher J. Osgood

Learn More
Electrical models for biological cells predict that reducing the duration of applied electrical pulses to values below the charging time of the outer cell membrane (which is on the order of 100 ns for mammalian cells) causes a strong increase in the probability of electric field interactions with intracellular structures due to displacement currents. For(More)
We investigated the effects of nanosecond pulse electric fields (nsPEFs) on Jurkat and PANC1 cells, which are human carcinoma cell lines, in the presence of Tween 80 (T80) at a concentration of 0.18 % and demonstarted an enhanced killing effect. We used two biological assays to determine cell viability after exposing cells to nsPEFs in the presence of T80(More)
  • 1