Christopher J. Hough

Learn More
The mammalian CNS contains an abundance of chelatable Zn(2+) sequestered in the vesicles of glutamatergic terminals. These vesicles are particularly numerous in hippocampal mossy fiber synapses of the hilar and CA3 regions. Our recent observation of frequency-dependent Zn(2+) release from mossy fiber synaptic terminals and subsequent entry into postsynaptic(More)
Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons.(More)
Intense or chronic stress can produce pathophysiological alterations in the systems involved in the stress response. The amygdala is a key component of the brain's neuronal network that processes and assigns emotional value to life's experiences, consolidates the memory of emotionally significant events, and organizes the behavioral response to these(More)
Lithium is the most commonly used drug for the treatment of manic depressive illness. The precise mechanisms underlying its clinical efficacy remain unknown. We found that long-term exposure to lithium chloride dramatically protects cultured rat cerebellar, cerebral cortical, and hippocampal neurons against glutamate-induced excitotoxicity, which involves(More)
The real time dynamics of vanilloid-induced cytotoxicity and the specific deletion of nociceptive neurons expressing the wild-type vanilloid receptor (VR1) were investigated. VR1 was C-terminally tagged with either the 27-kDa enhanced green fluorescent protein (eGFP) or a 12-amino acid epsilon-epitope. Upon exposure to resiniferatoxin, VR1eGFP- or(More)
The therapeutic mechanisms of lithium for treating bipolar mood disorder remain poorly understood. Recent studies demonstrate that lithium has neuroprotective actions against a variety of insults. Here, we studied neuroprotective effects of lithium against excitotoxicity in cultured cerebral cortical neurons. Glutamate-induced excitotoxicity in cortical(More)
Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy(More)
The modulation of synaptic plasticity by serotonin type II (5-hydroxytryptamine type II (5-HT(2)))-receptor stimulation was explored using intracellular, field potential and Fura-2 fluorescence image recordings in a rat amygdala slice preparation. Bath application of 5HT(2) receptor agonist 1-(2,5)-dimethoxy-4-iodophen-2-aminopropane (DOI) transformed(More)
Li, Yang, Christopher J. Hough, Sang Won Suh, John M. Sarvey, and Christopher J. Frederickson. Rapid translocation of Zn from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 86: 2597–2604, 2001. Zn is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse(More)
We investigated the cytoprotective effects of lithium, the mood-stabilizer, on thapsigargin-induced stress on the endoplasmic reticulum (ER) in rat PC12 cells. Protracted lithium pretreatment of PC12 cells elicited cytoprotection against thapsigargin-induced cytotoxicity. Lithium protection was concurrent with inhibition of thapsigargin-induced(More)