Christopher J. Fell

Learn More
Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton(More)
Many degradation mechanisms in organic solar cells are underpinned by the ingress of water at certain points. We demonstrate the use of a photocurrent mapping technique to examine the diffusive ingress of water at the edges of a cell and at pinholes in the cathode layer. A diffusion model applied to the experimental results leads to a value of (5.0 ± 2.7) ×(More)
The photochemistry of poly{p-phenylene[1-(tetrahydrothiophen-1-io)ethylene chloride]} (PPTEC), a water soluble precursor of the semiconducting polymer, poly{p-phenylenevinylene} (PPV), has been studied both under atmospheric conditions and in environments devoid of oxygen. UV-visible spectroscopy and photoluminescence data has been used to provide a picture(More)
Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for(More)
  • 1