Christopher J Desantis

  • Citations Per Year
Learn More
Au/Pd octopods, nanostructures with eight branches and a primarily Au interior, have been synthesized as size-controlled samples through the manipulation of seed-mediated co-reduction. The position of their localized surface plasmon resonance can be controllably tuned throughout the visible and near-infrared regions, and this response is correlated with the(More)
Gold-palladium octopods and new concave and shape-controlled alloy nanostructures are synthesized by seed-mediated co-reduction, wherein two metal precursors are reduced in the presence of seeds that serve as preferential sites for the growth of the larger nanostructures. Here, the first comprehensive study of this technique is presented in a model Au-Pd(More)
Au/Pd octopods and concave core@shell Au@Pd nanocrystals have been prepared by coupling for the first time a seed-mediated synthetic method with co-reduction. The integration of these two methods is central to the formation of these binary Au/Pd nanocrystals wherein the kinetics of seeded growth are manipulated via the co-reduction technique to control the(More)
The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic(More)
The optical properties of metal nanomaterials are determined by a set of parameters that include composition, particle size and shape, overall architecture, and local environment. This Tutorial Review examines the influence of each of these factors on the localized surface plasmon resonance of colloidal metal nanoparticles. This examination is paralleled(More)
Branched metal nanoparticles often display unique physicochemical properties on account of their structures; however, most examples are asymmetric, with branches randomly distributed from the cores of the nanoparticles. This asymmetry can give rise to variable properties between samples. Here, we report the synthesis of symmetrically branched Au/Pd(More)
Branched nanocrystals display interesting optical and catalytic properties on account of their high surface areas and tips with small radii of curvatures. However, many synthetic routes toward branched nanocrystals result in inhomogeneous samples on account of asymmetric branching. Seed-mediated coreduction is a recently developed route to symmetrically(More)
The use of earth-abundant materials is at the frontier of nanoplasmonics research, where their availability and low cost can enable practical mainstream applications and commercial viability. Aluminum is of specific interest in this regard, due to its ability to support plasmon resonances throughout the ultraviolet (UV), visible, and infrared regions of the(More)
Au/Pd octopods with hollow, cubic interiors and Oh symmetry were synthesized for the first time by etching core@shell Pd@Au/Pd octopods to selectively remove their Pd interiors. Integration of multiple architectural features - in this case branching symmetry, composition, and interior design - into one nanostructure provides design strategies to new(More)
There is currently a worldwide need to develop efficient photocatalytic materials that can reduce the high-energy cost of common industrial chemical processes. One possible solution focuses on metallic nanoparticles (NPs) that can act as efficient absorbers of light due to their surface plasmon resonance. Recent work indicates that small NPs, when(More)