Christopher J. Campisano

Learn More
Central to the debate surrounding global climate change and Plio-Pleistocene hominin evolution is the degree to which orbital-scale climate patterns influence low-latitude continental ecosystems and how these influences can be distinguished from regional volcano-tectonic events and local environmental effects. The Pliocene Hadar Formation of Ethiopia(More)
Our understanding of the origin of the genus Homo has been hampered by a limited fossil record in eastern Africa between 2.0 and 3.0 million years ago (Ma). Here we report the discovery of a partial hominin mandible with teeth from the Ledi-Geraru research area, Afar Regional State, Ethiopia, that establishes the presence of Homo at 2.80 to 2.75 Ma. This(More)
The Hadar paleoanthropological site in Ethiopia preserves a record of hominin evolution spanning from approximately 3.45 Ma to 0.8 Ma. An angular unconformity just above the ca. 2.95 Ma BKT-2 complex divides the sediments into the Hadar Formation (ca. 3.8-2.9Ma) and the Busidima Formation (ca. 2.7-0.15 Ma). The unconformity is likely a response to a major(More)
Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to(More)
The Whistler Squat Quarry (TMM 41372) of the lower Devil's Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47-50 Ma and below a tuff previously dated to ∼44(More)
Understanding the evolution of humans and our close relatives is one of the enduring scientific issues of modern times. Since the time of Charles Darwin, scientists have speculated on how and when we evolved and what conditions drove this evolutionary story. The detective work required to address these questions is necessarily interdisciplinary, involving(More)
The giraffid fossils recovered from ~ 2.8–2.6 million year old (Ma) sediments from Lee Adoyta, Ledi-Geraru, Ethiopia, are described here. Sivatherium maurusium and Giraffa cf. G. gracilis are the two identified taxa, with the former being more abundant than the latter. We interpret this skew of relative abundance to be of paleoenvironmental significance, as(More)
One approach to understanding the context of changes in hominin paleodiets is to examine the paleodiets and paleohabitats of contemporaneous mammalian taxa. Recent carbon isotopic studies suggest that the middle Pliocene was marked by a major shift in hominin diets, characterized by a significant increase in C4 foods in Australopithecus-grade species,(More)
Hawks et al. argue that our analysis of Australopithecus sediba mandibles is flawed and that specimen LD 350-1 cannot be distinguished from this, or any other, Australopithecus species. Our reexamination of the evidence confirms that LD 350-1 falls outside of the pattern that A. sediba shares with Australopithecus and thus is reasonably assigned to the(More)
Over the past century, numerous vertebrate fossils collected near the town of Ramnagar, India, have proven to be important for understanding the evolution and biogeography of many mammalian groups. Primates from Ramnagar, though rare, include a number of hominoid specimens attributable to Sivapithecus, as well as a single published mandibular fragment(More)