Christopher H. Taron

Learn More
Dolichol phosphate mannose (Dol-P-Man), formed upon transfer of Man from GDPMan to Dol-P, is a mannosyl donor in pathways leading to N-glycosylation, glycosyl phosphatidylinositol membrane anchoring, and O-mannosylation of protein. Dol-P-Man synthase is an essential protein in Saccharomyces cerevisiae. We have cloned cDNAs encoding human and(More)
Secretion of proteins is the most common approach to protein expression in Kluyveromyces lactis. A proteomic analysis was performed on spent fermentation medium following bioreactor propagation of a wild-type industrial strain to identify proteins naturally secreted by K. lactis cells. Multidimensional separations were conducted and RP online ESI-MS/MS(More)
Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these(More)
Glycosylphosphatidylinositols (GPIs) are critical for membrane anchoring and intracellular transport of certain secretory proteins. GPIs have a conserved trimannosyl core bearing a phosphoethanolamine (EthN-P) moiety on the third mannose (Man-3) through which the glycolipid is linked to protein, but diverse GPI precursors with EthN-Ps on Man-1 and Man-2(More)
The major glycosylphosphatidylinositols (GPIs) transferred to protein in mammals and trypanosomes contain three mannoses. In Saccharomyces cerevisiae, however, the GPI transferred to protein bears a fourth, alpha1,2-linked Man on the alpha1,2-Man that receives the phosphoethanolamine (EthN-P) moiety through which GPIs become linked to protein. We report(More)
The strong LAC4 promoter (P(LAC4)) from Kluyveromyces lactis has been extensively used to drive expression of heterologous proteins in this industrially important yeast. A drawback of this expression method is the serendipitous ability of P(LAC4) to promote gene expression in Escherichia coli. This can interfere with the process of assembling expression(More)
Biosynthesis of glycosylphosphatidylinositol (GPI) is initiated by transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI). This chemically simple step is genetically complex because three genes are required in both mammals and yeast. Mammalian PIG-A and PIG-C are homologous to yeast GPI3 and GPI2, respectively; however,(More)
Addition of the second mannose is the only obvious step in glycosylphosphatidylinositol (GPI) precursor assembly for which a responsible gene has not been discovered. A bioinformatics-based strategy identified the essential Saccharomyces cerevisiae Ybr004c protein as a candidate for the second GPI alpha-mannosyltransferase (GPI-MT-II). S. cerevisiae cells(More)
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1(More)
The yeast Kluyveromyces lactis has been extensively used as a host for heterologous protein expression. A necessary step in the construction of a stable expression strain is the introduction of an integrative expression vector into K. lactis cells, followed by selection of transformed strains using either medium containing antibiotic (e.g., G418) or(More)