Christopher H. Lusk

Learn More
Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently(More)
Aim Our aim was to quantify climatic influences on key leaf traits and relationships at the global scale. This knowledge provides insight into how plants have adapted to different environmental pressures, and will lead to better calibration of future vegetation–climate models. Location The data set represents vegetation from 175 sites around the world.(More)
Most knowledge of the physiological correlates of interspecific variation in shade tolerance derives from studies of first-year seedlings in artificial environments. The present study relates growth, allocation, foliage turnover, biomass distribution and gas exchange traits to low-light survival of large seedlings (20–100 cm tall) of eight temperate(More)
• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify(More)
Leaf mass per area (LMA) is one of the most widely measured of all plant functional traits. In deciduous forests, there is similarity between plastic and evolutionary responses of LMA to light gradients. In evergreens, however, LMA is lower in shaded than sunlit individuals of the same species, whereas shade-tolerant evergreens have higher LMA than(More)
Leaf dark respiration (R) is one of the most fundamental physiological processes in plants and is a major component of terrestrial CO2 input to the atmosphere. Still, it is unclear how predictably species vary in R along broad climate gradients. Data for R and other key leaf traits were compiled for 208 woody species from 20 sites around the world. We(More)
• Here we explore the possible role of leaf-level gas exchange traits in determining growth rate differences and competitive interactions between evergreen angiosperms and conifers. • We compared relationships among photosynthetic capacity ( A max ), maximum stomatal conductance ( G s ), leaf life span, nitrogen concentration (N) and specific leaf area(More)
• Plant light interception efficiency is a crucial determinant of carbon uptake by individual plants and by vegetation. Our aim was to identify whole-plant variables that summarize complex crown architecture, which can be used to predict light interception efficiency. • We gathered the largest database of digitized plants to date (1831 plants of 124(More)
*When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We(More)
BACKGROUND AND AIMS A long-running debate centres on whether shade tolerance of tree seedlings is mainly a function of traits maximizing net carbon gain in low light, or of traits minimizing carbon loss. To test these alternatives, leaf display, light-interception efficiency, and simulated net daily carbon gain of juvenile temperate evergreens of differing(More)