Christopher Gaiteri

Learn More
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain(More)
OBJECTIVE Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Recent gene array attempts to identify the molecular underpinnings of the illness in human postmortem subjects have not yielded a consensus. The authors hypothesized that controlling several sources of clinical and technical variability and supporting(More)
The pre-Bötzinger complex (pre-BötC), within the mammalian respiratory brainstem, represents an ideal system for investigating the synchronization properties of complex neuronal circuits via the interaction of cell-type heterogeneity and network connectivity. In isolation, individual respiratory neurons from the pre-BötC may be tonically active,(More)
Coordinated gene transcript levels across tissues (denoted "gene synchrony") reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying(More)
Biological functions are often realized by groups of interacting molecules or cells. Membership in these groups may overlap when molecules or cells are reused in multiple functions. Traditional clustering methods assign components to no more than one group, and cannot identify multi-community nodes. Technical noise is common in high-throughput biological(More)
The structure of gene coexpression networks reflects the activation and interaction of multiple cellular systems. Since the pathology of neuropsychiatric disorders is influenced by diverse cellular systems and pathways, we investigated gene coexpression networks in major depression, and searched for putative unifying themes in network connectivity across(More)
Biological functions are carried out by groups of interacting molecules, cells or tissues, known as communities. Membership in these communities may overlap when biological components are involved in multiple functions. However, traditional clustering methods detect non-overlapping communities. These detected communities may also be unstable and difficult(More)
Physical interactions among molecules, cells, and tissues influence research in biology. While conferences and departments are created to study these interactions, previous attempts to understand the large-scale organization of science have only focused on social relationships among scientists. Here, we combine the structure of molecular interaction(More)
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network(More)
Experiments suggest that the generation of robust, synchronized bursting within the pre-Bötzinger complex (pre-BötC) of the mammalian brainstem may be critical for respiration, particularly in low oxygen states. The intrinsic dynamics of individual respiratory cells within the pre-BötC, in the absence of coupling, varies widely, with some cells exhibiting(More)
  • 1