Christopher G. Atkeson

Learn More
This paper surveys locally weighted learning, a form of lazy learning and memory-based learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers,(More)
Future computing environments will free the user from the constraints of the desktop. Applications for a mobile environment should take advantage of contextual information, such as position, to offer greater services to the user. In this paper, we present the Cyberguide project, in which we are building prototypes of a mobile context-aware tour guide.(More)
Abstract We introduce a constructive, incremental learning system for regression problems that models data by means of spatially localized linear models. In contrast to other approaches, the size and shape of the receptive field of each locally linear model as well as the parameters of the locally linear model itself are learned independently, i.e., without(More)
We present a new algorithm,prioritized sweeping, for efficient prediction and control of stochastic Markov systems. Incremental learning methods such as temporal differencing and Q-learning have real-time performance. Classical methods are slower, but more accurate, because they make full use of the observations. Prioritized sweeping aims for the best of(More)
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how(More)
The goal of robot learning from demonstration is to have a robot learn from watching a demonstration of the task to be performed. In our approach to learning from demonstration the robot learns a reward function from the demonstration and a task model from repeated attempts to perform the task. A policy is computed based on the learned reward function and(More)
We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such as Temporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use of the observations. Prioritized Sweeping aims for the best of(More)
Locally weighted learning (LWL) is a class of techniques from nonparametric statistics that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot(More)
A person seeking another person's attention is normally able to quickly assess how interruptible the other person currently is. Such assessments allow behavior that we consider natural, socially appropriate, or simply polite. This is in sharp contrast to current computer and communication systems, which are largely unaware of the social situations(More)