Learn More
Toxin-antitoxin (TA) systems are small genetic elements found on plasmids or chromosomes of countless bacteria, archaea, and possibly also unicellular fungi. Under normal growth conditions, the activity of the toxin protein or its translation is counteracted by an antitoxin protein or noncoding RNA. Five types of TA systems have been proposed that differ(More)
The occurrence of highly variable penicillin-binding proteins (PBPs) in penicillin-resistant Streptococcus pneumoniae suggested that transfer of homologous genes from related species may be involved in resistance development. Antiserum and monoclonal antibodies raised against PBPs 1a and 2b from the susceptible S. pneumoniae R6 strain were used to identify(More)
Toxin-antitoxin (TA) systems are small genetic elements ubiquitous in prokaryotic genomes that encode toxic proteins targeting various vital cellular functions. Typically, toxin activity is controlled by adjacently encoded protein or RNA antitoxins and unleashed as a consequence of genetic fluctuations or stressful conditions. Whereas some TA systems(More)
Autism has a strong genetic background with a higher frequency of affected males suggesting involvement of X-linked genes and possibly also other factors causing the unbalanced sex ratio in the etiology of the disorder. We have identified two missense mutations in the ribosomal protein gene RPL10 located in Xq28 in two independent families with autism. We(More)
A full length cDNA encoding a novel Trypanosoma cruzi DnaJ protein was cloned and characterized. The 324 amino acid protein encoded by the cDNA (TcDJ1) displays a characteristics J-domain, but lacks the Gly-Phe and zinc finger regions present in some other DnaJ proteins. Relative to four other T. cruzi DnaJ proteins, TcDJ1 has an amino terminal extension(More)
We compared the response of NO 3 (-) -induced nitrate-reductase (NR) and nitrite-reductase (NIR) levels in virtually carotenoid-free far-red-light-grown mustard (Sinapis alba L.) cotyledons following a photooxidative treatment of the plastids. The cytosolic localization of NR and the plastidic localization of NIR were confirmed with this approach. Emphasis(More)
Toxin-antitoxin (TA) systems are small genetic elements of prokaryotes associated with persister cell formation, phage defence, stress regulation and programmed cell arrest. In this study, we characterized two paralogues of the ribosome-dependent RNase YefM-YoeB TA system from the Gram-positive organism Staphylococcus equorum SE3. 5' Rapid amplification of(More)
Toxin-antitoxin (TA) systems encoded in prokaryotic genomes fall into five types, typically composed of two distinct small molecules, an endotoxic protein and a cis-encoded antitoxin of ribonucleic or proteinaceous nature. In silico analysis revealed seven putative type I and three putative type II TA systems in the genome of the nonpathogenic species(More)
An internal 630-bp DNA fragment of the gene encoding penicillin-binding protein 3 (PBP 3) (dacA) of Streptococcus pneumoniae was identified in a lambda gt11 gene bank screened with anti-PBP 3 antiserum. The deduced 210-amino-acid sequence showed a high degree of homology to the low-molecular-weight PBPs 5 and 6 of Escherichia coli and Bacillus subtilis PBP(More)
Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. To survive an increase in osmolarity, bacteria immediately take up potassium ions and small organic compounds known as compatible solutes. The second messenger cyclic diadenosine monophosphate (c-di-AMP) reduces the ability of bacteria to(More)