Christopher F Macmanus

Learn More
Sepsis and septic acute lung injury are among the leading causes for morbidity and mortality of critical illness. Extracellular adenosine is a signaling molecule implicated in the cellular adaptation to hypoxia, ischemia, or inflammation. Therefore, we pursued the role of the A2B adenosine receptor (AR) as potential therapeutic target in endotoxin-induced(More)
Nucleotide signaling is currently an area of intense investigation. Extracellular adenosine triphosphate (ATP) liberated during hypoxia or inflammation can either signal directly to purinergic receptors or, after phosphohydrolytic metabolism, can activate surface adenosine receptors. Given the association of polymorphonuclear leukocytes (PMNs) with adenine(More)
Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of(More)
Inflammatory diseases influence tissue metabolism, significantly altering the profile of extracellular adenine nucleotides. A number of studies have suggested that adenosine (Ado) may function as an endogenously generated anti-inflammatory molecule. Given the central role of intestinal epithelial cells to the development of colitis, we hypothesized that(More)
Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells(More)
Because of localized vascular damage and increased tissue oxygen demand, wound healing occurs in a relatively hypoxic microenvironment. These features are particularly relevant to wound healing and fibrosis in chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis. In these studies, we sought to identify the contribution of hypoxia(More)
In intact mucosal tissues, epithelial cells are anatomically positioned in proximity to a number of subepithelial cell types, including endothelia. A number of recent studies have suggested that imbalances between energy supply and demand can result in "inflammatory hypoxia." Given these associations, we hypothesized that endothelial-derived,(More)
Inflammatory diseases influence tissue metabolism, altering regulation of extracellular adenine nucleotides, with a resultant protective influence of adenosine. Ecto-5'-nucleotidase (CD73) is a central surface enzyme generating extracellular adenosine. Thus, we hypothesized that CD73 is protective in mucosal inflammation as modeled by trinitrobenzene(More)
Mucosal surfaces, such as the lung and intestine, are lined by a monolayer of epithelia that provides tissue barrier and transport function. It is recently appreciated that a common feature of inflammatory processes within the mucosa is hypoxia (so-called inflammatory hypoxia). Given the strong association between bacterial translocation and mucosal(More)
We have shown previously that interleukin-8 (IL-8) and IL-8 receptor expression is elevated in tumor cells of human prostate biopsy tissue and correlates with increased cyclin D1 expression. Using PC3 and DU145 cell lines, we sought to determine whether IL-8 signaling regulated cyclin D1 expression in androgen-independent prostate cancer (AIPC) cells and to(More)