Christopher F. Adams

  • Citations Per Year
Learn More
Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects have prompted development of non-viral alternatives, such as magnetic nanoparticle (MNPs). NSCs are propagated(More)
Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are(More)
Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology(More)
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early(More)
Tissue engineering studies are witnessing a major paradigm shift to cell culture on biomimetic materials that replicate native tissue features from which the cells are derived. Few studies have been performed in this regard for neural cells, particularly in nanomedicine. For example, platforms such as magnetic nanoparticles (MNPs) have proven efficient as(More)
Corticosteroids (CSs) are widely used clinically, for example in pediatric respiratory distress syndrome, and immunosuppression to prevent rejection of stem cell transplant populations in neural cell therapy. However, such treatment can be associated with adverse effects such as impaired neurogenesis and myelination, and increased risk of cerebral palsy.(More)
Neural stem cells (NSCs) have high translational potential in transplantation therapies for neural repair. Enhancement of their therapeutic capacity by genetic engineering is an important goal for regenerative neurology. Magnetic nanoparticles (MNPs) are major non-viral vectors for safe bioengineering of NSCs, offering critical translational benefits over(More)
Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic(More)
  • 1