Learn More
We have reviewed the current state of multidisciplinary knowledge of the photoprotective mechanism in the photosystem II antenna underlying non-photochemical chlorophyll fluorescence quenching (NPQ). The physiological need for photoprotection of photosystem II and the concept of feed-back control of excess light energy are described. The outline of the(More)
Plants must regulate their use of absorbed light energy on a minute-by-minute basis to maximize the efficiency of photosynthesis and to protect photosystem II (PSII) reaction centers from photooxidative damage. The regulation of light harvesting involves the photoprotective dissipation of excess absorbed light energy in the light-harvesting antenna(More)
We characterized a set of Arabidopsis mutants deficient in specific light-harvesting proteins, using freeze-fracture electron microscopy to probe the organization of complexes in the membrane and confocal fluorescence recovery after photobleaching to probe the dynamics of thylakoid membranes within intact chloroplasts. The same methods were used to(More)
In higher plants, high light conditions trigger the activation of non-photochemical quenching (NPQ), a process of photoprotective light energy dissipation, via acidification of the chloroplast lumen. Spectral changes occurring in the neoxanthin domain of the major light harvesting antenna complex (LHCII) have previously provided indirect evidence of a(More)
To prevent photo-oxidative damage to the photosynthetic membrane in strong light, plants dissipate excess absorbed light energy as heat in a mechanism known as non-photochemical quenching (NPQ). NPQ is triggered by the trans-membrane proton gradient (ΔpH), which causes the protonation of the photosystem II light-harvesting antenna (LHCII) and the PsbS(More)
We present our perspective on the theoretical basis of light-harvesting within the photosynthetic membrane. Far from being a static structure, the photosynthetic membrane is a highly dynamic system, with protein mobility playing an important role in the damage/repair cycle of photosystem II (PSII), in balancing the input of energy between PSI and PSII, and(More)
The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is(More)
Photoprotective non-photochemical quenching (NPQ) in higher plants is the result of the formation of energy quenching traps in the light-harvesting antenna of photosystem II (PSII). It has been proposed that this quenching trap is a lutein molecule closely associated with the chlorophyll terminal emitter of the major light-harvesting complex LHCII. We have(More)
Excitation energy transfer and quenching in LHCII aggregates is considered in terms of a coarse-grained model. The model assumes that the excitation energy transfer within a pigment-protein complex is much faster than the intercomplex excitation energy transfer, whereas the quenching ability is attributed to a specific pigment-protein complex responsible(More)
Quantum chemical calculations have been employed for the investigation of the lowest excited electronic states of lutein, with particular reference to its function within light harvesting antenna complexes of higher plants. Through comparative analysis obtained by using different methods based on gas-phase calculations of the spectra, it was determined that(More)