Christopher D. Wood

Learn More
Controlled expression of transgenes in plants is key to the characterization of gene function and the regulated manipulation of growth and development. The alc gene-expression system, derived from the filamentous fungus Aspergillus nidulans, has previously been used successfully in both tobacco and potato, and has potential for use in agriculture. Its value(More)
Reactive oxygen species (ROS), mostly derived from mitochondrial activity, can damage various macromolecules and consequently cause cell death. This ROS activity has been characterized in vitro, and correlative evidence suggests a role in various pathological conditions. In addition to this passive ROS activity, ROS also participate in cell signaling(More)
Eggs of many marine and mammalian species attract sperm by releasing chemoattractants that modify the bending properties of flagella to redirect sperm paths toward the egg. This process, called chemotaxis, is dependent on extracellular Ca(2+). We used stroboscopic fluorescence imaging to measure intracellular Ca(2+) concentration ([Ca(2+)]i) in the flagella(More)
Populations of cells are almost always heterogeneous in function and fate. To understand the plasticity of cells, it is vital to measure quantitatively and dynamically the molecular processes that underlie cell-fate decisions in single cells. Early events in cell signalling often occur within seconds of the stimulus, whereas intracellular signalling(More)
Marine invertebrate oocytes establish chemoattractant gradients that guide spermatozoa towards their source. In sea urchin spermatozoa, this relocation requires coordinated motility changes initiated by Ca(2+)-driven alterations in sperm flagellar curvature. We discovered that Lytechinus pictus spermatozoa undergo chemotaxis in response to speract, an(More)
Echinoderm sperm use cyclic nucleotides (CNs) as essential second messengers to locate and swim towards the egg. Sea urchin sperm constitute a rich source of membrane-bound guanylyl cyclase (mGC), which was first cloned from sea urchin testis by the group of David Garbers. His group also identified speract, the first sperm-activating peptide (SAP) to be(More)
Sperm motility, crucial for fertilization, has been mostly studied in two dimensions (2D) by recording their swimming trajectories near a flat surface. However, spermatozoa swim in three-dimensions (3D) to find eggs, with their speed being the main impediment to track them under realistic conditions. Here, we describe a novel method allowing 3D tracking and(More)
Speract, an egg-derived sperm-activating peptide, induces changes in intracellular Ca2+, Na+, pH, cAMP, cGMP, and membrane potential in sperm of the sea urchin Strongylocentrotus purpuratus. Ca2+ is a key regulator of motility in all sperm and, in many marine species, is required for generating turns interspersed with straighter swimming paths that are(More)
The firefly luciferase gene has become widely used as a convenient reporter for studies of gene promoter regulation. Very recently, the development of ultralow-light imaging cameras has enabled the quantitative digital imaging of light signals resulting from luciferase activation in the presence of luciferin substrate. We have applied this technology to the(More)