Christopher D. Manning

Learn More
First: Recap Main topic today: How can we improve recall in search? “aircraft” in query doesn’t match with “plane” in document “heat” in query doesn’t match with “thermodynamics” in document Options for improving recall Local methods: Do a “local”, on-demand analysis for a user query Main local method: relevance feedback Global methods: Do a global analysis(More)
In 1993, Eugene Charniak published a slim volume entitled Statistical Language Learning. At the time, empirical techniques to natural language processing were on the rise — in that year, Computational Linguistics published a special issue on such methods — and Charniak’s text was the first to treat the emerging field. Nowadays, the revolution has become the(More)
We demonstrate that an unlexicalized PCFG can parse much more accurately than previously shown, by making use of simple, linguistically motivated state splits, which break down false independence assumptions latent in a vanilla treebank grammar. Indeed, its performance of 86.36% (LP/LR F1) is better than that of early lexicalized PCFG models, and(More)
Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global(More)
This paper describes a system for extracting typed dependency parses of English sentences from phrase structure parses. In order to capture inherent relations occurring in corpus texts that can be critical in real-world applications, many NP relations are included in the set of grammatical relations used. We provide a comparison of our system with Minipar(More)
Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, a simple Monte Carlo method used to perform approximate(More)
We describe the design and use of the Stanford CoreNLP toolkit, an extensible pipeline that provides core natural language analysis. This toolkit is quite widely used, both in the research NLP community and also among commercial and government users of open source NLP technology. We suggest that this follows from a simple, approachable design,(More)
Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank.(More)
This paper presents results for a maximumentropy-based part of speech tagger, which achieves superior performance principally by enriching the information sources used for tagging. In particular, we get improved results by incorporating these features: (i) more extensive treatment of capitalization for unknown words; (ii) features for the disambiguation of(More)
A significant portion of the world’s text is tagged by readers on social bookmarking websites. Credit attribution is an inherent problem in these corpora because most pages have multiple tags, but the tags do not always apply with equal specificity across the whole document. Solving the credit attribution problem requires associating each word in a document(More)