Christopher D Goodman

Learn More
Glutathione S-transferases (GSTs) traditionally have been studied in plants and other organisms for their ability to detoxify chemically diverse herbicides and other toxic organic compounds. Anthocyanins are among the few endogenous substrates of plant GSTs that have been identified. The Bronze2 (Bz2) gene encodes a type III GST and performs the last(More)
AN9 is a glutathione S-transferase from petunia (Petunia hybrida) required for efficient anthocyanin export from the site of synthesis in the cytoplasm into permanent storage in the vacuole. For many xenobiotics it is well established that a covalent glutathione (GSH) tag mediates recognition of molecules destined for vacuolar sequestration by a(More)
Anthocyanin biosynthesis is one of the most thoroughly studied enzymatic pathways in biology, but little is known about the molecular mechanisms of its final stage: the transport of the anthocyanin pigment into the vacuole. We have identified a multidrug resistance-associated protein (MRP), ZmMrp3, that is required for this transport process in maize (Zea(More)
Many anti-bacterial drugs inhibit growth of malaria parasites by targeting their bacterium-derived endosymbiotic organelles, the mitochondrion and plastid. Several of these drugs are either in use or being developed as therapeutics or prophylactics, so it is paramount to understand more about their target of action and modality. To this end, we measured in(More)
The pellicles of alveolates (ciliates, apicomplexans, and dinoflagellates) share a common organization, yet perform very divergent functions, including motility, host cell invasion, and armor. The alveolate pellicle consists of a system of flattened membrane sacs (alveoli, which are the defining feature of the group) below the plasma membrane that is(More)
Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use(More)
Live cell imaging of human malaria parasites Plasmodium falciparum during gametocytogenesis revealed that the apicoplast does not grow, whereas the mitochondrion undergoes remarkable morphological development. A close connection of the two organelles is consistently maintained. The apicoplast and mitochondrion are not components of the male gametes,(More)
Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is(More)
Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite(More)
The causative agent of malaria, Plasmodium, possesses three translationally active compartments: the cytosol, the mitochondrion and a relic plastid called the apicoplast. Aminoacyl-tRNA synthetases to charge tRNA are thus required for all three compartments. However, the Plasmodiumfalciparum genome encodes too few tRNA synthetases to supply a unique enzyme(More)