Christopher Cottingham

Learn More
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the(More)
The precise physiological effects of antidepressant drugs, and in particular their actions at non-monoamine transporter targets, are largely unknown. We have recently identified the tricyclic antidepressant drug desipramine (DMI) as a direct ligand at the α(2A) adrenergic receptor (AR) without itself driving heterotrimeric G protein/downstream effector(More)
The neurobiological mechanisms of action underlying antidepressant drugs remain poorly understood. Desipramine (DMI) is an antidepressant classically characterized as an inhibitor of norepinephrine reuptake. Available evidence, however, suggests a mechanism more complex than simple reuptake inhibition. In the present study, we have characterized the direct(More)
Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance(More)
Spinophilin plays critical roles in regulating trafficking and signaling of the alpha(2)-adrenergic receptor (AR) both in vitro and in vivo (Wang, Q., Zhao, J., Brady, A. E., Feng, J., Allen, P. B., Lefkowitz, R. J., Greengard, P., and Limbird, L. E. (2004) Science 304, 1940-1944). In the present study, we demonstrate that protein kinase A (PKA)(More)
Antidepressant drugs remain poorly understood, especially with respect to pharmacological mechanisms of action. This lack of knowledge results from the extreme complexity inherent to psychopharmacology, as well as to a corresponding lack of knowledge regarding depressive disorder pathophysiology. While the final analysis is likely to be multifactorial and(More)
We previously identified spinophilin as a regulator of alpha(2) adrenergic receptor (alpha(2)AR) trafficking and signaling in vitro and in vivo (Science 304:1940-1944, 2004). To assess the generalized role of spinophilin in regulating alpha(2)AR functions in vivo, the present study examined the impact of eliminating spinophilin on alpha(2)AR-evoked(More)
Many antidepressant drugs, including the tricyclic antidepressant desipramine (DMI), are broadly understood to function by modulating central noradrenergic neurotransmission. α(2) adrenergic receptors (α(2)ARs) are key regulators of the noradrenergic system, and previous work has implicated α(2)ARs in mediating the antidepressant activity of DMI in the(More)
Antidepressant mechanisms of action remain shrouded in mystery, greatly hindering our ability to develop therapeutics which can fully treat patients suffering from depressive disorders. In an attempt to shed new light on this topic, we have undertaken a series of studies investigating actions of tricyclic antidepressant drugs (TCAs) at the α2A adrenergic(More)
The therapeutic mechanism of action underlying many psychopharmacological agents remains poorly understood, due largely to the extreme molecular promiscuity exhibited by these agents with respect to potential central nervous system targets. Agents of the tricyclic chemical class, including both antidepressants and antipsychotics, exhibit a particularly high(More)