Christopher Bruhn

Learn More
Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and(More)
ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins - Dpb11(TopBP1), Ddc1(Rad9) and Dna2 - all interact with and activate Mec1(ATR). Each contains an ATR activation domain (ADD) that interacts directly with the Mec1(ATR):Ddc2(ATRIP) complex. Any of the Dpb11(TopBP1), Ddc1(Rad9)(More)
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the(More)
Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are(More)
  • 1