Christopher Alan Wells

Learn More
An adequate description of entire genomes has to include information on the three-dimensional (3D) structure of proteins. Most of these protein structures will be determined by high-throughput modeling procedures. Thus, a structure-based analysis of the network of protein-protein interactions in genomes requires docking methodologies that are capable of(More)
Using the 3T3-F442A preadipocyte line as a model of GH-dependent differentiation, early changes in the DNA-binding affinity of transcription factors in response to GH addition were investigated. Addition of 50 ng/ml human GH to cells in chemically defined medium led to a rapid increase in binding activity of activator protein 1 (AP-1) and CCAAT(More)
Gbetagamma dimer formation occurs early in the assembly of heterotrimeric G proteins. On nondenaturing (native) gels, in vitro translated, (35)S-labeled Ggamma subunits traveled primarily according to their pI and apparently were not associated with other proteins. In contrast, in vitro translated, (35)S-labeled Gbeta subunits traveled at a high apparent(More)
Synaptic transmission is a finely regulated mechanism of neuronal communication. The release of neurotransmitter at the synapse is not only the reflection of membrane depolarization events, but rather, is the summation of interactions between ion channels, G protein coupled receptors, second messengers, and the exocytotic machinery itself which exposes the(More)
It has been proposed that dimerization of identical receptor subunits by growth hormone (GH) is the mechanism of signal transduction across the cell membrane. We present here data with analogs of porcine GH (pGH), with GH receptors (GHR) mutated in the dimerization domain and with monoclonal antibodies to the GHR which indicate that dimerization is(More)
The Gbeta and Ggamma subunit of the heterotrimeric G proteins form a functional dimer that is stable once assembled in vivo or in vitro. The requirements, mechanism, and specificity of dimer formation are still incompletely understood, but represent important biochemical processes involved in the specificity of cellular signaling through G proteins. Here,(More)
The GH receptor (GHR) plays a key role in postnatal growth regulation. Although plasma concentrations of GH are high during fetal life, its role during fetal development is not well understood. Recent data suggest that GHR are present in fetal hepatic tissue as early as 51 days gestation. However, the levels of GHR expression are markedly lower in fetal(More)
Members of the cytokine receptor family have a consensus WSXWS sequence (WS motif) in the extracellular domain. With the interleukin-2, erythropoietin, and prolactin receptors, alteration of the WS sequence disrupts ligand binding and receptor signaling. The structural basis for these effects is unclear. To examine the role of the WS equivalent sequence(More)
G(i/o)-protein-coupled receptors (GPCRs) ubiquitously inhibit neurotransmission, principally via Gβγ, which acts via a number of possible effectors. GPCR effector specificity has traditionally been attributed to Gα, based on Gα's preferential effector targeting in vitro compared with Gβγ's promiscuous targeting of various effectors. In synapses, however,(More)
Previous studies have shown that the distal region on mouse chromosome (Chr) 2 is subject to imprinting as mice with maternal duplication/paternal deficiency (MatDp.dist2) and the reciprocal (PatDp.dist2) for this region exhibit phenotypic anomalies at birth and die neonatally. We show here that imprinting effects are detectable in utero. Notably(More)