Christopher A Wassif

Learn More
We investigated the function of Lhx2, a LIM homeobox gene expressed in developing B-cells, forebrain and neural retina, by analyzing embryos deficient in functional Lhx2 protein. Lhx2 mutant embryos are anophthalmic, have malformations of the cerebral cortex, and die in utero due to severe anemia. In Lhx2-/- embryos specification of the optic vesicle(More)
During mammalian embryonic development, the ovaries and testes develop from somatic cells of the urogenital ridges as indifferent gonads, harbouring primordial germ cells that have migrated there. After sex determination of the gonads, the testes produce testosterone and anti-Mullerian hormone which mediate male sexual differentiation, and the female(More)
Vertebrate limb development is controlled by three signaling centers that regulate limb patterning and growth along the proximodistal (PD), anteroposterior (AP) and dorsoventral (DV) limb axes. Coordination of limb development along these three axes is achieved by interactions and feedback loops involving the secreted signaling molecules that mediate the(More)
Niemann-Pick type C1 (NPC1) disease is a rare progressive neurodegenerative disorder characterized by accumulation of cholesterol in the endolysosomes. Previous studies implicating oxidative stress in NPC1 disease pathogenesis raised the possibility that nonenzymatic formation of cholesterol oxidation products could serve as disease biomarkers. We measured(More)
Smith-Lemli-Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we(More)
The RSH/Smith--Lemli--Opitz syndrome (RSH/SLOS) is a human autosomal recessive syndrome characterized by multiple malformations, a distinct behavioral phenotype with autistic features and mental retardation. RSH/SLOS is due to an inborn error of cholesterol biosynthesis caused by mutation of the 3 beta-hydroxysterol Delta(7)-reductase gene. To further our(More)
Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential(More)
The Smith-Lemli-Opitz syndrome (SLOS; also known as "RSH syndrome" [MIM 270400]) is an autosomal recessive multiple malformation syndrome due to a defect in cholesterol biosynthesis. Children with SLOS have elevated serum 7-dehydrocholesterol (7-DHC) levels and typically have low serum cholesterol levels. On the basis of this biochemical abnormality, it has(More)
L S Correa-Cerro, C A Wassif, J S Waye, P A Krakowiak*, D Cozma, N R Dobson, S W Levin, G Anadiotis, R D Steiner, M Krajewska-Walasek, M J M Nowaczyk, F D Porter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(More)
PURPOSE Niemann-Pick disease type C (NPC) is a recessive, neurodegenerative, lysosomal storage disease caused by mutations in either NPC1 or NPC2. The diagnosis is difficult and frequently delayed. Ascertainment is likely incomplete because of both these factors and because the full phenotypic spectrum may not have been fully delineated. Given the recent(More)