Christopher A Maxwell

Learn More
Tumor cells use a wide variety of post-translational mechanisms to modify the functional repertoire of their transcriptome. One emerging but still understudied mechanism involves the export of cytoplasmic proteins that then partner with cell-surface receptors and modify both the surface-display kinetics and signaling properties of these receptors. Recent(More)
The receptor for hyaluronan-mediated motility (RHAMM), an acidic coiled coil protein, has previously been characterized as a cell surface receptor for hyaluronan, and a microtubule-associated intracellular hyaluronan binding protein. In this study, we demonstrate that a subset of cellular RHAMM localizes to the centrosome and functions in the maintenance of(More)
Elevated expression of receptor for hyaluronan-mediated motility (RHAMM) within ex vivo diagnostic multiple myeloma plasma cells predicts for aggressive disease and patient survival. Here, we investigate the relationship between RHAMM and centrosomal abnormalities within multiple myeloma patient samples. We report that myeloma patient samples contain(More)
Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation(More)
Multiple myeloma (MM) is a B-lineage malignancy characterized by diverse genetic subtypes and clinical outcomes. The recurrent immunoglobulin heavy chain (IgH) switch translocation, t(4;14)(p16;q32), is associated with poor outcome, though the mechanism is unclear. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) for proposed target(More)
Current models of oncogenesis describe cancer as a progression of genetic mutations in a tumor cell mass. However, tumors are more than a clonal expansion of malignant cells. Tumors are heterogeneous, with a complex 3D structure, analogous to organs comprised of different tissues. In a tumor mass, the component cell types interact with each other and with(More)
Radiation-induced genomic instability, in which the progeny of irradiated cells display a high frequency of nonclonal genomic damage, occurs at a frequency inconsistent with mutation. We investigated the mechanism of this nontargeted effect in human mammary epithelial cells (HMEC) exposed to low doses of radiation. We identified a centrosome-associated(More)
There is growing evidence that cancer-initiation could result from epigenetic changes. Y-box binding protein-1 (YB-1) is a transcription/translation factor that promotes the formation of tumors in transgenic mice; however, the underlying molecular events are not understood. To explore this in a human model system, YB-1 was expressed in mammary epithelial(More)
Construction of a mitotic spindle requires biochemical pathways to assemble spindle microtubules and structural proteins to organize these microtubules into a bipolar array. Through a complex with dynein, the receptor for hyaluronan-mediated motility (RHAMM) cross-links mitotic microtubules to provide structural support, maintain spindle integrity, and(More)
The aurora kinases facilitate transit from G2 through cytokinesis and, thus, are targets in cancer therapy. Multiple myeloma (MM) is a malignancy characterized by genetic instability, suggesting a disruption of checkpoints that arrest cells at G2M when injury to the mitotic machinery occurs. Since deficient checkpoints would prevent cell cycle arrest and(More)