Christophe Soligo

Learn More
Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago, whereas the oldest known(More)
Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal(More)
Estimation of divergence times is usually done using either the fossil record or sequence data from modern species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence times that utilize both sources of information. The number of preserved primate species discovered in the fossil record, along(More)
Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species,(More)
Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an(More)
Interpretation of the adaptive profile of ancestral primates is controversial and has been constrained for decades by general acceptance of the premise that the first primates were very small. Here we show that neither the fossil record nor modern species provide evidence that the last common ancestor of living primates was small. Instead, comparative(More)
It has long been accepted that the adaptive radiation of modern placental mammals, like that of modern birds, did not begin until after the Cretaceous/Tertiary (K/T) boundary 65 million years (Ma) ago, following the extinction of the dinosaurs. The first undoubted fossil relatives of modern primates appear in the record 55 Ma ago. However, in agreement with(More)
The morphology of postcranial articular surfaces is expected to reflect their weight-bearing properties, as well as the stability and mobility of the articulations to which they contribute. Previous studies have mainly confirmed earlier predictions of isometric scaling between articular surface areas and body mass; the exception to this is 'male-type',(More)
Body mass is undoubtedly central to the overall adaptive profile of any organism. Despite this, very little is known of what forces drive evolutionary changes in body mass and, consequently, shape patterns of body mass distribution exhibited by animal radiations. The search for factors that may influence evolutionary processes in general frequently focuses(More)
Environmental interpretation of fossil assemblages requires an accurate reconstruction of the community from which the assemblage was derived, which in turn depends on the quality of a comparative model usually based on the study of modern equivalents. The degree of inaccuracy introduced by taphonomic and other types of bias is often difficult to assess and(More)