Christophe Sauvan

Learn More
We design several single-photon-sources based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. Through various taper designs, we engineer the nanowire ends to realize efficient metallic-dielectric mirrors and to reduce the divergence of the far-field radiation diagram. Using fully-vectorial calculations and a comprehensive(More)
When a guided wave is impinging onto a Photonic Crystal (PC) mirror, a fraction of the light is not reflected back and is radiated into the claddings. We present a theoretical and numerical study of this radiation problem for several three-dimensional mirror geometries which are important for light confinement in micropillars, air-bridge microcavities and(More)
We provide a self-consistent electromagnetic theory of the coupling between dipole emitters and dissipative nanoresonators. The theory that relies on the concept of quasinormal modes with complex frequencies provides an accurate closed-form expression for the electromagnetic local density of states of any photonic or plasmonic resonator with strong(More)
The efficiency of conventional diffractive optical elements with échelette-type profiles drops rapidly as the illumination wavelength departs from the blaze wavelength. We use high dispersion of artificial materials to synthesize diffractive optical elements that are blazed over a broad spectral range (approximately 1 octave) or for two different(More)
We report on high-accuracy angle-resolved optical transmission measurements through anisotropic 2D plasmonic crystals made of gold films with large-area rectangular arrays of nanoscale square holes, deposited on GaAs substrates. The measurements reveal the dispersion relations of air-gold and gold-GaAs surface plasmon polaritons. The crystal anisotropy(More)
We theoretically study fishnet metamaterials at optical frequencies. In contrast with earlier works, we provide a microscopic description by tracking the transversal and longitudinal flows of energy through the fishnet mesh composed of intersecting subwavelength plasmonic waveguides. The analysis is supported by a semianalytical model based on(More)
We present a semi-analytical formalism capable of handling the coupling of electromagnetic sources, such as point dipoles or free-propagating fields, with various kinds of dissipative resonances with radiation leakage, Ohmic losses or both. Due to its analyticity, the approach is very intuitive and physically-sound. It is also very economic in computational(More)
We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or(More)
We demonstrate a large tuning of the coupling strength in Photonic Crystal molecules without changing the inter-cavity distance. The key element for the design is the "photonic barrier engineering", where the "potential barrier" is formed by the air-holes in between the two cavities. This consists in changing the hole radius of the central row in the(More)
Light emission by inelastic tunneling has been known for many years. Recently, this technique has been used to generate surface plasmons using a scanning tunneling microscope tip. The emission process suffers from a very low efficiency lower than a photon in 10^{4} electrons. We introduce a resonant plasmonic nanoantenna that allows both enhancing the power(More)