Learn More
The modal method is applied to the problem of conical diffraction on a rectangular slit metallic grating lying on an arbitrary multilayer medium. In the approximation of the surface impedance boundary condition on the grating walls, a single matrix equation is obtained, whose coefficients are expressed simply by the reflectivities on the different layers. A(More)
Quantum cascade devices processed into double metal cavities with subwavelength thickness and a grating on top are studied at terahertz frequencies. The power extracted from the devices as a function of the device thickness and the grating period is analyzed owing to electrodynamical modeling of dipole emission based on a modal method in multilayer systems.(More)
Coupled mode theory for waveguide arrays is extended to next-nearest neighbor interactions using propagation equations. Both lateral diffraction and propagation of Floquet-Bloch waves are altered respectively by extra coupling and non-orthogonality between isolated waveguide modes. The analytical formula describing the distortions of the diffraction(More)
In homogeneous arrays of coupled waveguides, Floquet-Bloch waves are known to travel freely across the waveguides. We introduce a systematic discussion of the built-in patterning of the coupling constant between neighboring waveguides. Key patterns provide functions such as redirecting, guiding, and focusing these waves, up to nonlinear all-optical routing.(More)
Structuring the coupling constant in coupled waveguide arrays opens up a new route towards molding and controlling the flow of light in discrete structures. We show coupled mode theory is a reliable yet very simple and practical tool to design and explore new structures of patterned coupling constant. We validate our simulation and technological choices by(More)
Arrays of coupled waveguides where light propagates as Floquet-Bloch (FB) waves while remaining guided have proven to be both excellent models for demonstrating fundamental effects and promising platforms for all-optical routing [1]. We proposed to engineer the propagation of guided light by patterning the coupling between neighboring waveguides [2]. In(More)
We show that elegant and inspiring photonics can be achieved in inhomogeneous waveguide arrays. We engineer light flow in waveguide arrays via patterning the coupling strength between waveguides which is key for light distribution within the discrete metamaterial. Applications range from multiport beam-steering discrete analogues of reflection and(More)
Segmented strip-loaded waveguide arrays are investigated within a rigorous square lattice photonic crystal model. We derive a full multiband discrete diffraction approach for near-axial injection in the direction of a lattice vector. We obtain an effective waveguide array picture, with quasi-linear dependence on the segmentation ratio in a simplified(More)
We demonstrate both theoretically and experimentally that discrete diffraction resonance can be designed, fabricated, and successfully probed in functionalized - guidonic - coupled waveguide arrays. We evidence that double-barrier patterning of the coupling creates wavelength-independent angular tunnel resonance in the transmitted and the reflected(More)