Christophe Lavelle

Learn More
Magnetic tweezers were used to study the mechanical response under torsion of single nucleosome arrays reconstituted on tandem repeats of 5S positioning sequences. Regular arrays are extremely resilient and can reversibly accommodate a large amount of supercoiling without much change in length. This behavior is quantitatively described by a molecular model(More)
In their recent paper in Cell, Furuyama and Henikoff (2009) report that nucleosomes in centromeres may be right-handed, that is, they wrap DNA in a right-handed manner and induce positive supercoils. This raises intriguing new questions, such as how centromeric histone variants may be assembled into right-handed particles, and why chromatin would retain(More)
Chromatin is a multiscale structure on which transcription, replication, recombination and repair of the genome occur. To fully understand any of these processes at the molecular level under physiological conditions, a clear picture of the polymorphic and dynamic organization of chromatin in the eukaryotic nucleus is required. Recent studies indicate that a(More)
Using magnetic tweezers to investigate the mechanical response of single chromatin fibers, we show that fibers submitted to large positive torsion transiently trap positive turns at a rate of one turn per nucleosome. A comparison with the response of fibers of tetrasomes (the [H3-H4](2) tetramer bound with approximately 50 bp of DNA) obtained by depletion(More)
Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed,(More)
Nucleosomes were discovered more than thirty years ago as the basic repeating units of chromatin. Since then, nucleosomes have progressively revealed their taste to come in many appearances, upon either adjunction of other proteins (e.g., a fifth histone or a nonhistone protein, HMG-N), histone substitution for isoforms (histone variants), depletion of one(More)
Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of(More)
Hfq is a bacterial protein involved in RNA metabolism. Besides this, Hfq's role in DNA restructuring has also been suggested. Since this mechanism remains unclear, we examined the DNA conformation upon Hfq binding by combining vibrational spectroscopy and neutron scattering. Our analysis reveals that Hfq, which preferentially interacts with deoxyadenosine(More)
Hfq is a bacterial pleiotropic regulator that mediates several aspects of nucleic acids metabolism. The protein notably influences translation and turnover of cellular RNAs. Although most previous contributions concentrated on Hfq's interaction with RNA, its association to DNA has also been observed in vitro and in vivo. Here, we focus on DNA-compacting(More)
Interstitial (also called internal or intrachromosomal) telomeric sequences (ITS) are found in many organisms.(1) In hamsters, CHO cells show long (up to several Mbp) ITS(2) (Fig. 1A) which are over involved in spontaneous or radiation induced chromosome aberrations.(3) ITS are also found in human, but they are much shorter (several hundreds of bp maximum)(More)