# Christophe Crespelle

Learn More
We present a fully dynamic algorithm that maintains three different representations of an interval graph: a minimal interval model of the graph, the P Q-tree of its maximal cliques, and its modular decomposition. After each vertex or edge modification (insertion or deletion), the algorithm determines whether the new graph is an interval graph in O(n) time,(More)
In this paper we address the problem of designing O(n) space representations for permutation and interval graphs that provide the neighborhood of any vertex in O(d) time, where d is its degree. To that purpose, we introduce a new parameter, called linearity, that would solve the problem if bounded for the two classes. Surprisingly, we show that it is not.(More)
The minimal interval completion problem consists in adding edges to an arbitrary graph so that the resulting graph is an interval graph; the objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. We give an O(n 2)-time algorithm to obtain a(More)
We analyse a huge and very precise trace of contact data collected during 6 months on the entire population of a rehabilitation hospital. We investigate the graph structure of the average daily contact network. Our main results are to unveil striking properties of this structure in the considered hospital, and to present a methodology that can be used for(More)
In this paper, we design the first linear-time algorithm for computing the prime decomposition of a digraph G with regard to the cartesian product. A remarkable feature of our solution is that it computes the decomposition of G from the decomposition of its underlying undirected graph, for which there exists a linear-time algorithm. First, this allows our(More)
• Andélie Rotenberg
• 2010
Many contributions use the degree distribution of IP-level internet topology. However, current knowledge of this property relies on biased and erroneous measurements, and so it is subject to much debate. We introduce here a new approach, dedicated to the core of the internet, which avoids the issues raised by classical measurements. It is based on the(More)