Christophe Crespelle

Learn More
This paper presents an optimal fully-dynamic recognition algorithm for directed cographs. Given the modular decomposition tree of a directed cograph G, the algorithm supports arc and vertex modification (insertion or deletion) in O(d) time where d is the number of arcs involved in the operation. Moreover, if the modified graph remains a directed cograph,(More)
This paper considers the problem of maintaining a compact representation (O(n) space) of permutation graphs under vertex and edge modifications (insertion or deletion). That representation allows us to answer adjacency queries in O(1) time. The approach is based on a fully dynamic modular decomposition algorithm for permutation graphs that works in O(n)(More)
In this paper we address the problem of designing O(n) space representations for permutation and interval graphs that provide the neighborhood of any vertex in O(d) time, where d is its degree. To that purpose, we introduce a new parameter, called linearity, that would solve the problem if bounded for the two classes. Surprisingly, we show that it is not.(More)
An intense activity is nowadays devoted to the definition of models capturing the properties of complex networks. Among the most promising approaches, it has been proposed to model these graphs via their clique incidence bipartite graphs. However, this approach has, until now, severe limitations resulting from its incapacity to reproduce a key property of(More)
Many contributions use the degree distribution of IP-level internet topology. However, current knowledge of this property relies on biased and erroneous measurements, and so it is subject to much debate. We introduce here a new approach, dedicated to the core of the internet, which avoids the issues raised by classical measurements. It is based on the(More)
Many contributions rely on the degree distribution of the Inter-net topology. However, current knowledge of this property is based on biased and erroneous measurements and is subject to much debate. Recently, in [7], a new approach, referred to as the Neighborhood Flooding method, was proposed to avoid issues raised by classical measurements. It aims at(More)
In this paper, we design the first linear-time algorithm for computing the prime decomposition of a digraph G with regard to the cartesian product. A remarkable feature of our solution is that it computes the decomposition of G from the decomposition of its underlying undirected graph, for which there exists a linear-time algorithm. First, this allows our(More)
We analyse a huge and very precise trace of contact data collected during 6 months on the entire population of a rehabilitation hospital. We investigate the graph structure of the average daily contact network. Our main results are to unveil striking properties of this structure in the considered hospital, and to present a methodology that can be used for(More)
—Most current models of the internet rely on knowledge of the degree distribution of its core routers, which plays a key role for simulation purposes. In practice, this distribution is usually observed directly on maps known to be partial, biased and erroneous. This raises serious concerns on the true knowledge one may have of this key property. Here, we(More)